在vs环境中跑动sift特征提取(原理部分)

/*

如果给两张图片,中间有相似点。要求做匹配。怎么做。我现在能讲么?

比如给了两幅图片,先求出sift点。

尺度空间极值检测。高斯模糊

关键点定位

关键点方向确定

关键点描述

kdtree 和 bbf 最优节点优先算法

进行两幅图片特征点的匹配,会涵盖一些不正确的匹配点

ransac 随机抽样一致,消除不合适的点

把需要匹配的点,限定到某一个正确的地方

根据这种匹配的结果。确定两幅图相交的某一个点。

比如两幅图的重叠方式是,左上右下的方式,那么在不重叠的地方,按照左边图像写入,然后全黑。

重叠地方,按照权值进行平滑过渡。左下角的部分涂黑,右下角不重叠的地方按照右图写入。

*/

慢慢来:

三组共六个文件

imgfeatures.h 和imgfeatures.c 部分

枚举类型1:

feature_type

枚举类型2:

feature_match_type

两组特征颜色

#define FEATURE_OXFD_COLOR CV_RGB(255,255,0)
#define FEATURE_LOWE_COLOR CV_RGB(255,0,255)

述子长度

#define FEATURE_MAX_D 128

特征结构

feature

四个函数:

1、导入特征点

2、导出特征点

3、绘画特征点

4、计算两个述子之间的欧氏距离。

在描述特征点导入时:http://www.robots.ox.ac.uk:5000/~vgg/research/affine/index.html

有这样一个说明

然后是实现

导入特征点时:

从文件中读取特征点,文件的组织格式应该是符合牛津视觉几何组的编码形式,或者符合大卫罗尔的编码格式。type这个地方的参数如果是 FEATURE_TYPE 那么她就会被按照牛津特征输入文件的方式对待,也就是牛津视觉几何组,详见http://www.robots.ox.ac.uk:5000/~vgg/research/affine/index.html

断点:仿射协变特征

概述:这个页面针对在任意图片中探测仿射不变特征的问题和区域探测述子的性能评估。【应该就是述子如何描述仿射不变特征,以及述子性能好坏的评估】

公开:

  区域探测:

http://www.robots.ox.ac.uk:5000/~vgg/research/affine/det_eval_files/mikolajczyk_ijcv2004.pdf【尺度仿射兴趣点不变检测】

http://www.robots.ox.ac.uk:5000/~vgg/research/affine/det_eval_files/matas_bmvc2002.pdf【最稳定极值区域】

http://www.robots.ox.ac.uk:5000/~vgg/research/affine/det_eval_files/tuytelaars_ijcv2004.pdf【基于仿射不变区域匹配广域分割场景】

http://www.robots.ox.ac.uk:5000/~vgg/research/affine/det_eval_files/kadir04.pdf【放射不变显著区域检测】

All Detectors - SurveyT. Tuytelaars and K. Mikolajczyk, Local Invariant Feature Detectors - Survey. In CVG, 3(1):1-110, 2008.【学名是这个,如果找到的话,求联系~~~】

然后这个第五个文献找不到,希望高玩们可以一同帮忙找下

  区域描述:

http://www.robots.ox.ac.uk:5000/~vgg/research/affine/det_eval_files/lowe_ijcv2004.pdf【来自尺度不变关键点的独特图像特征】

  性能评估:

http://www.robots.ox.ac.uk:5000/~vgg/research/affine/det_eval_files/vibes_ijcv2004.pdf【仿射区域检测器们的对比】

http://www.robots.ox.ac.uk:5000/~vgg/research/affine/det_eval_files/mikolajczyk_pami2004.pdf【本地述子性能评估】

软件:

  既没有linux,也没有matlab 就不想弄了。。。

测试数据:

  下载一下就可以了

imgfeatures.c 就是一些实现的过程。

然后看下sift.h这个里面的东西也很简洁,忽然觉得这些东西有点儿像java里面的public函数。.c里面的倒都比较像private函数只能它里面使用。

看下sift.h 里面都有什么

一大堆变量的声明和两个函数

extern int sift_features(IplImage* img, struct feature** feat);

extern int _sift_features(IplImage* img, struct feature** feat, int intvls,
double sigma, double contr_thr, int curv_thr,
int img_dbl, int descr_width, int descr_hist_bins);

并且好像在后面还是调用的关系,毕竟两个的名字十分相像。然后点点点的发现,就是调用的同一个函数。

所以sift的两个文件,就是用来找到sift特征点的。不过要怎么找寻呢。接下来可能就要看这个函数的内容了。

时间: 2024-10-17 22:30:28

在vs环境中跑动sift特征提取(原理部分)的相关文章

在vs环境中跑动sift特征提取

因为在前两天的学习中发现.在opencv环境中跑动sift特征点提取还是比较困难的. 所以在此,进行记述. 遇到的问题分别有,csdn不愿意花费积分.配置gtk困难.教程海量然而能跑者鲜.描述不详尽等. [然后我却是发现这个borwhess实在是不知道叫先生何名为好.] 话归正题. 以下跑动具体过程: 首先去: http://blog.csdn.net/masibuaa/article/details/9246493 发现main.cpp 也就是:检测sift的部分. 这个回头慢慢凿.先跑起来:

【转】Java多线程编程(十)-并发编程原理(分布式环境中并发问题)

转载地址:http://blog.csdn.net/leicool_518/article/details/42268947 在分布式环境中,处理并发问题就没办法通过操作系统和JVM的工具来解决,那么在分布式环境中,可以采取一下策略和方式来处理: 避免并发 时间戳 串行化 数据库 行锁 统一触发途径 避免并发 在分布式环境中,如果存在并发问题,那么很难通过技术去解决,或者解决的代价很大,所以我们首先要想想是不是可以通过某些策略和业务设计来避免并发.比如通过合理的时间调度,避开共享资源的存取冲突.

SIFT特征提取分析

SIFT特征提取分析 sift 关键点,关键点检测 读'D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints[J],IJCV,2004' 笔记 关键点是指图像中或者视觉领域中明显区别于其周围区域的地方,这些关键点对于光照,视角相对鲁棒,所以对图像关键点提取特征的好坏直接影响后续分类.识别的精度. 特征描述子就是对关键点提取特征的过程,应该具备可重复性.可区分性.准确性.有效性和鲁棒性. SIFT(Scale-I

SIFT特征原理简析(HELU版)

SIFT(Scale-Invariant Feature Transform)是一种具有尺度不变性和光照不变性的特征描述子,也同时是一套特征提取的理论,首次由D. G. Lowe于2004年以<Distinctive Image Features from Scale-Invariant Keypoints[J]>发表于IJCV中.开源算法库OpenCV中进行了实现.扩展和使用. 本文主要依据原始论文和网络上相关专业分析,对SIFT特征提取的算法流程进行简单分析.由于涉及到的知识概念较多,本人

[转]SIFT特征提取分析

SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下: 算法描述 SIFT特征不只具有尺度不变性,即使改变旋转角度,图像亮度或拍摄视角,仍然能够得到好的检测效果.整个算法分为以下几个部分: 1. 构建尺度空间 这是一个初始化操作,尺度空间

网站数据统计分析中的日志收集原理及其实现

> 网站数据统计分析工具是网站站长和运营人员经常使用的一种工具,比较常用的有谷歌分析.百度统计 和 腾讯分析等等.所有这些统计分析工具的第一步都是网站访问数据的收集.目前主流的数据收集方式基本都是基于javascript的.本文将简要分析这种数据收集的原理,并一步一步实际搭建一个实际的数据收集系统. 1.数据收集原理分析 简单来说,网站统计分析工具需要收集到用户浏览目标网站的行为(如打开某网页.点击某按钮.将商品加入购物车等)及行为附加数据(如某下单行为产生的订单金额等).早期的网站统计往往只收

静态路由中的递归路由原理与冗余备份链路的实现

如图1-4的拓扑中, R1去往R4的10.1.1.0/24网段,可以配置静态路由并以R2的fa0/1接口的IP地址为下一跳,但当R2的fa0/1端口为down时,需手动把静态路由切换到R3的fa0/1接口的IP地址,反之亦然. 图1-4 当链路数量很大时,在静态路由中关联直连网段中的下一跳地址,配置工作将非常巨大.此时可以在静态路由中关联非直连网段中的下一跳地址.例如当R1要访问R4上的直连网段10.1.1.0/24时,可以将R1的静态路由直接关联R4的fa0/0接口的IP地址 (ip rout

【1】Jdk1.8中的HashMap实现原理

HashMap概述 HashMap是基于哈希表的Map接口的非同步实现.此实现提供所有可选的映射操作,并允许使用null值和null键.此类不保证映射的顺序,特别是它不保证该顺序恒久不变. 内部实现 HashMap的数据结构(字段) 在Java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外.HashMap实际上是一个"链表散列"的数据结构,即数组和链表的结构,但是在jdk1.8里 加入了红黑

网站统计中的数据收集原理及实现

转载自:http://blog.sina.com.cn/s/blog_62b832910102w5mx.html Avinash Kaushik将点击流数据的获取方式分为4种:log files.web beacons.JavaScript tags和packet sniffers,其中包嗅探器(packet sniffers)比较不常见,最传统的获取方式是通过WEB日志文件(log files):而beacons和JavaScript是目前较为流行的方式,Google Analytics目前就