多线程原子操作

转载地址:http://www.cnblogs.com/FrankTan/archive/2010/12/11/1903377.html

gcc从4.1.2提供了__sync_*系列的built-in函数,用于提供加减和逻辑运算的原子操作。

其声明如下:

type __sync_fetch_and_add (type *ptr, type value, ...)
type __sync_fetch_and_sub (type *ptr, type value, ...)
type __sync_fetch_and_or (type *ptr, type value, ...)
type __sync_fetch_and_and (type *ptr, type value, ...)
type __sync_fetch_and_xor (type *ptr, type value, ...)
type __sync_fetch_and_nand (type *ptr, type value, ...)

type __sync_add_and_fetch (type *ptr, type value, ...)
type __sync_sub_and_fetch (type *ptr, type value, ...)
type __sync_or_and_fetch (type *ptr, type value, ...)
type __sync_and_and_fetch (type *ptr, type value, ...)
type __sync_xor_and_fetch (type *ptr, type value, ...)
type __sync_nand_and_fetch (type *ptr, type value, ...)

这两组函数的区别在于第一组返回更新前的值,第二组返回更新后的值。

type可以是1,2,4或8字节长度的int类型,即:

int8_t / uint8_t
int16_t / uint16_t
int32_t / uint32_t
int64_t / uint64_t

后面的可扩展参数(...)用来指出哪些变量需要memory barrier,因为目前gcc实现的是full barrier(类似于linux kernel 中的mb(),表示这个操作之前的所有内存操作不会被重排序到这个操作之后),所以可以略掉这个参数。

bool __sync_bool_compare_and_swap (type *ptr, type oldval type newval, ...)
type __sync_val_compare_and_swap (type *ptr, type oldval type newval, ...)

这两个函数提供原子的比较和交换,如果*ptr == oldval,就将newval写入*ptr,
第一个函数在相等并写入的情况下返回true.
第二个函数在返回操作之前的值。

__sync_synchronize (...)
发出一个full barrier.

关于memory barrier,cpu会对我们的指令进行排序,一般说来会提高程序的效率,但有时候可能造成我们不希望得到的结果,举一个例子,比如我们有一个硬件设备,它有4个寄存器,当你发出一个操作指令的时候,一个寄存器存的是你的操作指令(比如READ),两个寄存器存的是参数(比如是地址和size),最后一个寄存器是控制寄存器,在所有的参数都设置好之后向其发出指令,设备开始读取参数,执行命令,程序可能如下:
    write1(dev.register_size,size);
    write1(dev.register_addr,addr);
    write1(dev.register_cmd,READ);
    write1(dev.register_control,GO);
如果最后一条write1被换到了前几条语句之前,那么肯定不是我们所期望的,这时候我们可以在最后一条语句之前加入一个memory barrier,强制cpu执行完前面的写入以后再执行最后一条:

write1(dev.register_size,size);
    write1(dev.register_addr,addr);
    write1(dev.register_cmd,READ);
    __sync_synchronize();
    write1(dev.register_control,GO);

memory barrier有几种类型:
    acquire barrier : 不允许将barrier之后的内存读取指令移到barrier之前(linux kernel中的wmb())。
    release barrier : 不允许将barrier之前的内存读取指令移到barrier之后 (linux kernel中的rmb())。
    full barrier    : 以上两种barrier的合集(linux kernel中的mb())。

还有两个函数:

type __sync_lock_test_and_set (type *ptr, type value, ...)
   将*ptr设为value并返回*ptr操作之前的值。

void __sync_lock_release (type *ptr, ...)
     将*ptr置0

示例程序:

#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>

static int count = 0;

void *test_func(void *arg)
{
        int i=0;
        for(i=0;i<20000;++i){
                __sync_fetch_and_add(&count,1);
        }
        return NULL;
}

int main(int argc, const char *argv[])
{
        pthread_t id[20];
        int i = 0;

for(i=0;i<20;++i){
                pthread_create(&id[i],NULL,test_func,NULL);
        }

for(i=0;i<20;++i){
                pthread_join(id[i],NULL);
        }

printf("%d\n",count);
        return 0;
}

参考:

1. http://refspecs.freestandards.org/elf/IA64-SysV-psABI.pdf   section 7.42. http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html#Atomic-Builtins

时间: 2024-10-05 10:10:31

多线程原子操作的相关文章

[OS] 多线程--原子操作 Interlocked系列函数

转自:http://blog.csdn.net/morewindows/article/details/7429155 上一篇<多线程--第一次亲密接触 CreateThread与_beginthreadex本质区别>中讲到一个多线程报数功能.为了描述方便和代码简洁起见,我们可以只输出最后的报数结果来观察程序是否运行出错.这也非常类似于统计一个网站每天有多少用户登录,每个用户登录用一个线程模拟,线程运行时会将一个表示计数的变量递增.程序在最后输出计数的值表示有今天多少个用户登录,如果这个值不等

C++拾遗--多线程:原子操作解决线程冲突

C++拾遗--多线程:原子操作解决线程冲突 前言 在多线程中操作全局变量一般都会引起线程冲突,为了解决线程冲突,引入原子操作. 正文 1.线程冲突 #include <stdio.h> #include <stdlib.h> #include <process.h> #include <Windows.h> int g_count = 0; void count(void *p) { Sleep(100); //do some work //每个线程把g_c

多线程编程之原子操作

在多线程环境中,对共享的变量的访问,可以使用基于Compare And Swap这种lock free的技术进行实现,这种实现的好处是效率高. 一.原子操作摘录 1.1 Android 源码:system/core/libcutils /atomic.c(针对X86): 1 #elif defined(__i386__) || defined(__x86_64__) 2 3 void android_atomic_write(int32_t value, volatile int32_t* ad

秒杀多线程第三篇 原子操作 Interlocked系列函数

版权声明:本文为博主原创文章,未经博主允许不得转载. 上一篇<多线程第一次亲密接触 CreateThread与_beginthreadex本质区别>中讲到一个多线程报数功能.为了描述方便和代码简洁起见,我们可以只输出最后的报数结果来观察程序是否运行出错.这也非常类似于统计一个网站每天有多少用户登录,每个用户登录用一个线程模拟,线程运行时会将一个表示计数的变量递增.程序在最后输出计数的值表示有今天多少个用户登录,如果这个值不等于我们启动的线程个数,那显然说明这个程序是有问题的.整个程序代码如下:

5 多线程,原子操作

推荐高洪岩的<Java多线程编程核心技术>,虽然很多代码都是纯粹为了炫耀技术,但看完之后再也不怕被多线程问倒了 随笔提一句,前面看了那多章同步代码块的内容,后面却发现lock完全可以取代.这本书在我看来可以砍掉一半,直接用Lock就好了. 问题1:用Java写代码来解决生产者——消费者问题. 使用lock实现,另外MQ消息队列的点对点模式也是同样的原理,以及duboo的发布订阅模式. MY:关键是搞明白何时阻塞.唤醒相关线程:wait/nofityAll 1 2 hasv=false; 3 4

多线程笔记--原子操作Interlocked系列函数

前面写了一个多线程报数的功能,为了描述方便和代码简洁起见,只输出最后的报数结果来观察程序运行结果.这非常类似一个网站的客户访问统计,每个用户登录用一个线程模拟,线程运行时将一个表示计数的变量递增.程序在最后输出这个计数的值表示今天有多少用户登录.如果这个值不等于我们启动的线程个数,那这个程序就是有问题的. #include <stdio.h> #include <process.h> #include <Windows.h> volatile long g_nLogin

多线程计数器——原子操作

众所周知,多线程下计数存在着计数不正确的问题.这个问题的根源在于多个线程对同一个变量可以同时访问(修改).这样就造成了修改后的结果不一致. 首先在这里先强调一点,volatile 关键字并不能提供多线程安全访问.因为有volatie修饰的变量,每次操作时遵循下面动作: 从内存取值 ---> 放入寄存器 ---> 操作 --->写回内存 这几个步骤不是原子的操作在任意两个步骤之间都可能被其他的线程中断,所以不是线程安全.详细内容参见 http://blog.csdn.net/littlef

[原] 锁&amp;锁与指令原子操作的关系 &amp; 如何成就最快的多线程Queue?

锁 锁以及信号量对大部分人来说都是非常熟悉的,特别是常用的mutex.锁有很多种,互斥锁,自旋锁,读写锁,顺序锁,等等,这里就只介绍常见到的, 互斥锁 这个是最常用的,win32:CreateMutex-WaitForSingleObject-ReleaseMutex,linux的pthread_mutex_lock-pthread_mutex_unlock,c#的lock和Monitor,java的lock,这些都是互斥锁.互斥锁的作用大家都知道,是让一段代码同时只能有一个线程运行, 自旋锁

[转] 多线程下变量-gcc原子操作 __sync_fetch_and_add等

http://blog.sina.com.cn/s/blog_6f5b220601013zw3.html 非常好的原子操作,不用加锁:__sync_fetch_and_add GCC 提供的原子操作 gcc从4.1.2提供了__sync_*系列的built-in函数,用于提供加减和逻辑运算的原子操作. 其声明如下: type __sync_fetch_and_add (type *ptr, type value, ...) type __sync_fetch_and_sub (type *ptr