P5283 [十二省联考2019]异或粽子

传送门

超级钢琴+可持久化$Trie$

同样设三元组 $(o,l,r)$ 表示左端点为 $o$,右端点 $\in [l,r]$ 的区间的最大异或值,这个东西可以用可持久化 $Trie$ 来维护

一开始把所有 $(i,i,n)$ 扔到堆里,然后每次取出计算贡献,设取得最大异或值的位置为 $t$,然后再把 $(o,l,t-1)$ 和 $(o,t+1,r)$ 扔到堆里

具体还是看代码,很容易理解

注意可能爆 $int$,所以要开 $unsigned\ int$,要注意代码常数,我代码 $luogu$ 上会 $TLE$,$LOJ$ 就可以过

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
inline uint read()
{
    uint x=0; char ch=getchar();
    while(ch<‘0‘||ch>‘9‘) ch=getchar();
    while(ch>=‘0‘&&ch<=‘9‘) { x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); }
    return x;
}
const int N=1e6+7,M=1e7+7e6;
uint n,K,sum[N],rt[N],t[M],pos[M],c[M][2];
namespace Trie {
    uint cnt=0;
    void ins(uint &o,int p,uint pre,uint v,uint ps)
    {
        o=++cnt; t[o]=t[pre]+1;
        if(p<0) { pos[o]=ps; return; }
        int d=(v>>p)&1; c[o][d^1]=c[pre][d^1];
        ins(c[o][d],p-1,c[pre][d],v,ps);
    }
    uint query(uint o,int p,uint pre,uint v)
    {
        if(p<0) return pos[o];
        int d=(v>>p)&1;
        if(t[c[o][d^1]]-t[c[pre][d^1]]>0) return query(c[o][d^1],p-1,c[pre][d^1],v);
        else return query(c[o][d],p-1,c[pre][d],v);
    }
}
struct dat {
    uint o,l,r,t;
    dat (uint o,uint l,uint r) : o(o),l(l),r(r),t(Trie::query(rt[r],31,rt[l-1],sum[o-1])) {}
    inline bool operator < (const dat &tmp) const {
        return (sum[t]^sum[o-1])<(sum[tmp.t]^sum[tmp.o-1]);
    }
};
priority_queue <dat> Q;
ll ans;
int main()
{
    n=read(),K=read(); uint a;
    Trie::ins(rt[0],31,0,0,0);
    for(int i=1;i<=n;i++)
    {
        a=read(); sum[i]=sum[i-1]^a;
        Trie::ins(rt[i],31,rt[i-1],sum[i],i);
    }
    for(int i=1;i<=n;i++) Q.push(dat(i,i,n));
    while(K--)
    {
        dat T=Q.top(); ans+=(sum[T.t]^sum[T.o-1]); Q.pop();
        if(T.l<T.t) Q.push(dat(T.o,T.l,T.t-1));
        if(T.r>T.t) Q.push(dat(T.o,T.t+1,T.r));
    }
    cout<<ans<<endl;
    return 0;
}

原文地址:https://www.cnblogs.com/LLTYYC/p/10682774.html

时间: 2024-10-09 16:53:47

P5283 [十二省联考2019]异或粽子的相关文章

P5283 [十二省联考2019]异或粽子 可持久化01Trie+线段树

$ \color{#0066ff}{ 题目描述 }$ 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 \(n\) 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 \(1\) 到 \(n\).第 \(i\) 种馅儿具有一个非负整数的属性值 \(a_i\).每种馅儿的数量都足够多,即小粽不会因为缺少原料而做不出想要的粽子.小粽准备用这些馅儿来做出 \(k\) 个粽子. 小粽的做法是:选两个整数数 \(l\), \(r\),满足 \(1 \leqslant l

【题解】Luogu P5283 [十二省联考2019]异或粽子

原题传送门 看见一段的异或和不难想到要做异或前缀和\(s\) 我们便将问题转化成:给定\(n\)个数,求异或值最靠前的\(k\)对之和 我们珂以建一个可持久化01trie,这样我们就珂以求出每个值\(s[a]\)与之前所有的值异或值最大的值\(b\)是多少,把这些所有\((b,a)\)塞进一个堆中 每次从堆顶取元素,设这个元素为\((b,a)\),要将\(b\)加入答案,并且在版本\(a\)的01trie中减去\(s[a]\)^\(b\),再取出\(s[a]\)与01trie中的数异或最大值(原

P5283 [十二省联考2019]异或粽子 可持久化字典树

非常类似那道超级钢琴 维护一个可持久化01trie即可 #include<bits/stdc++.h> using namespace std; #define rep(i,a,b) for(int i=(a);i<=(b);i++) #define repp(i,a,b) for(int i=(a);i>=(b);--i) #define ll long long #define see(x) (cerr<<(#x)<<'='<<(x)<

[十二省联考2019]异或粽子(可持久化tire,堆)

[十二省联考2019]异或粽子(luogu) Description 题目描述 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 nn 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 11 到 nn.第 ii 种馅儿具有一个非负整数的属性值 a_iai?.每种馅儿的数量都足够多,即小粽不会因为缺少原料而做不出想要的粽子.小粽准备用这些馅儿来做出 kk 个粽子. 小粽的做法是:选两个整数数 ll, rr,满足 1 \leqslant l \leqslant r

[十二省联考2019] 异或粽子 解题报告 (可持久化Trie+堆)

interlinkage: https://www.luogu.org/problemnew/show/P5283 description: solution: 显然有$O(n^2)$的做法,前缀和优化一下即可 正解做法是先确定一个右端点$r$,找到最优的$l$使得该区间的异或和最大,这个可以用可持久化$Trie$实现.不懂的话可以在我的博客里搜索 对每个点取出来后把答案放进一个堆里,显然当前的堆顶一定会对答案产生贡献 然后我们考虑每次取出的右端点,它依旧可能产生贡献.即上一次取的最优的$l$把

[十二省联考2019]异或粽子 (可持久化01tire 堆)

/* 查询异或最大值的方法是前缀和一下, 在01trie上二分 那么我们可以对于n个位置每个地方先求出最大的数, 然后把n个信息扔到堆里, 当我们拿出某个位置的信息时, 将他去除当前最大后最大的信息插入到堆中 所以动态维护01trie就可以了 */ #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<queue> #define mm

「十二省联考 2019」字符串问题

「十二省联考 2019」字符串问题 解题思路 傻逼题.. 考虑问题转化为一个A串向其支配的所有B串的后缀A串连边,如果有环答案 \(-1\) 否则是这个 \(\text{DAG}\) 上最长路径,直接建图是 \(n^2\) 的,考虑优化建图即可. 由于 \(A,B\) 都是原串的一个子串,那么对原串的反串建 SAM,一个子串的后缀就是其所在节点上比它长的串以及,其子树里的所有串. 首先将所有 \(A,B\) 串在 SAM上用倍增定位并新建节点,把SAM上每个节点拆成入点和出点,对于SAM每一个节

「十二省联考 2019」字符串问题 解题报告

「十二省联考 2019」字符串问题 当场就去世了,我这菜人改了一下午 考虑一个A,B之间的连边实际表示了两个A之间的有向边,然后把A的连边处理好,就转成了拓扑排序找环+最长链 但是边数很多,考虑优化连边 A,B之间的连边显然没法优化的,考虑一个B可以表示所有它的后缀A 把串反向建出SAM,然后一个B的后缀就是par树的子树 可以拿倍增定位 好了这题就没了 注意到一个事情,定位的点可能重复,于是对SAM拆点,每个点挂一个vector表示一个A或者B的点在SAM的这个位置 然后考虑如何连边 一个B所

#4349. 「十二省联考 2019」异或粽子

题意内存限制:1024 MiB时间限制:1500 ms小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 $n$ 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 $1$ 到 $n$.第 $i$ 种馅儿具有一个非负整数的属性值 $a_i$.每种馅儿的数量都足够多,即小粽不会因为缺少原料而做不出想要的粽子.小粽准备用这些馅儿来做出 $k$ 个粽子. 小粽的做法是:选两个整数数 $l,r$,满足 $1\le l\le r\le n$,将编号在 $[l,r]$ 范围内