大数据时代银行业应对策略

文|张建国(中国建设银行行长)

近十年来,中国银行业的改革发展取得了令世界瞩目的成就。在今年《银行家》《福布斯》发布的大企业排行榜和市值排名上,五家大型商业银行均已跻身世界前列。随着以移动互联网、云计算、“大数据”和物联网为代表的信息革命的兴起,银行业又一次面临新的机遇和挑战。中国银行业能否用好大数据,实现经营、管理和服务创新,决定了其未来的可持续发展能力。

银行业已初步具备运用大数据的基础


 
 大数据是信息技术与互联网产业发展到特定阶段的产物,从互联网到物联网,从云计算到大数据,信息技术正在从产业基础走向产业核心。而银行业作为与信息技
术深度结合的行业,互联网思维和决策数据化已开始嵌入经营管理的全流程。大数据实质是“深度学习”,能够为银行提供全方位、精确化和实时的决策信息支持。
银行的经营转型、产品创新和管理升级等都需要充分用好大数据。目前,银行在客户分析、风险管理方面对大数据运用已初步积累了一定的经验,为未来过渡到全面
大数据运用奠定了良好基础。

  20世纪90年代,随着信息技术发展,国内银行业顺应潮流,将信息技术广泛应用到业务处理和内部管理,以提高服务管理效率。进入21世纪,大银行率先推进系统大集中和数据大集中,整合原有分散化的信息系统,不断适应加快产品创新、提
升客户体验等市场需求,建立数据仓库和数据平台,信息化程度不断提高。近几年,银行业大力发展面向客户的新一代核心业务系统,信息系统建设日趋完备,电子
银行等在线金融服务大幅增长,在提升客户体验和风险管控能力、满足监管各项要求的同时,形成并储存了庞大的可用数据资源。银行业的数据资源不仅包括存贷汇核心业务结构化数据,也包含客户电话语音、在线交易记录、网点视频等非结构化数据。

 
 中国建设银行(以下简称建设银行)从2011年开始建设企业级全行共享的新一代核心业务系统,以客户为中心、面向服务设计架构,实现业务与IT融合、产
品快速创新的目的,目前已初具规模。特别是在新一代系统设计中,充分考虑数据储存和应用的重要性,并专项设置了数据集成层模块,包括数据缓存区、数据记录
系统、历史数据存储、分析数据仓库、实时数据仓库、公共数据集市。

 
 银行业开始尝试接入和整合外部数据资源。在传统的数据分析模式下,银行业出于市场分析、内部管理、监管需要,产生并记录了巨量的文本式结构化数据,涉及
客户账户资金往来、财务信息等,以及网银浏览、电话、视频等非结构化数据。但是,传统意义上的银行仅能掌握客户与银行业务相关的金融行为,无法获得客户在
社会生活中体现兴趣爱好、生活习惯、消费倾向的情感或行为数据,无法与业务数据形成联动。随着电子商务的快速发展和移动金融的深化,银行业逐步加强与外部
数据源对接,甄别有效信息,整合多渠道数据,丰富客户图谱。目前,已有多家银行进行了有益尝试。

 
 一是银行与电商平台形成战略合作。银行业共享小微企业在电商平台上的经营数据和经营者的个人信息,由电商平台向银行推荐有贷款意向的优质企业,银行通过
交易流水、买卖双方评价等信息,确定企业资信水平,给予授信额度。建设银行曾在这方面做过有益的尝试。此外也有银行参股电商、开展数据合作的案例。

 
 二是银行自主搭建电商平台。银行自建电商平台,获得数据资源的独立话语权。在为客户提供增值服务的同时,获得客户的动态商业信息,为发展小微信贷奠定基
础,是银行搭建电商平台的驱动力。2012年,建设银行率先上线“善融商务”,提供B2B和B2C客户操作模式,涵盖商品批发、商品零售、房屋交易等领
域,为客户提供信息发布、交易撮合、社区服务、在线财务管理、在线客服等配套服务,提供的金融服务已从支付结算、托管、担保扩展到对商户和消费者线上融资
服务的全过程。

 
 三是银行建立第三方数据分析中介,专门挖掘金融数据。例如,有的银行将其与电商平台一对一的合作扩展为“三方合作”,在银行与电商之间,加入第三方公司
来负责数据的对接,为银行及其子公司提供数据分析挖掘的增值服务。其核心是对客户的交易数据进行分析,准确预测客户短时间内的消费和交易需求,从而精准掌
握客户的信贷需求和其他金融服务需求。

 
 银行业有处理数据的经验和人才。数据分析和计量模型技术在传统数据领域已得到较充分运用,同时也培养出大批精通计量分析技术的人才。如在风险管理方面,
我国金融监管部门在与国际接轨过程中,引入巴塞尔新资本协议等国际准则,为银行业提供了一套风险管理工具体系。银行在此框架下,利用历史数据测度信用、市
场、操作、流动性等各类风险,内部评级相关技术工具已发挥出效果,广泛应用于贷款评估、客户准入退出、授信审批、产品定价、风险分类、经济资本管理、绩效
考核等重要领域。

 
 银行已初步尝试应用大数据。我国银行业大规模运用大数据技术尚不成熟,但多家银行已从关键点、具体业务入手应用大数据挖掘技术,解决效率提升中的难题。
例如,有的银行提供集电话、网络在线、客户端、微博、微信于一体的整合服务平台,也有的银行信用卡中心开发智能云语音,着眼于客服语音信息的挖掘和分析,
通过对海量语言数据的持续在线和实时处理,为服务质量改善、经营效率提升、服务模式创新提供支撑,从而全面提升运营管理水平。还有些银行在个人客户营销方
面,着重客户数据分析,摸索出客户行为模式和潜在需求,促成定向精准销售。例如,通过分析客户行为数据和财务数据来锁定潜在客户,根据客户行为规律,并结
合其所在区域、行为内容来确定消费习惯,开展针对性营销;通过分析交易记录信息来有效识别小微企业客户,并用远程银行和云转借实施交叉销售。此外,有的银
行还将其内部客户编号和微博、QQ、邮箱等相对应,将互联网数据与传统数据一起存储,建立数据库,不仅了解客户理财、基金购买等交易行为的频繁程度,还可
以发现其他动态信息如出差、喜好和社交圈等。

国际同业大数据运用的经验教训

  金融业大数据运用的国际经验主要体现在快速判断宏观经济趋势、分析预测客户及交易对手行为、防范欺诈、改进内部效率以及外包非核心业务等方面。

 
 快速判断宏观经济形势。英国央行已经开始运用大数据对英国房地产市场和劳动力市场趋势作出快速判断。以前,英国央行通过统计部门发布的房地产销售数据、
就业数据等,判断房地产市场和劳动力市场变动趋势,但统计部门的数据一般有数日乃至数周的时滞,不利于对形势的快速判断。目前,英国央行已通过对一些网络
搜索关键词的监控,如“按揭”“房价”“职位”等,获取最新的经济运行情况。

  分析预测客户及交易对手行为。由谷歌(Google)前首席信息官DouglasMerrill创办的信用评估公司ZestFinance,通过大数据技术把收集的海量碎片化数据整合成完整的客户拼图,较为准确地还原客户的真实状况和实际信用状况,并据此支持合
作公司向难以从银行获得贷款的美国人提供“工资日贷款”(paydayloan)。西班牙对外银行(BBVA)推出的具有记忆功能的ATM机ABIL,不
但能记住客户习惯的取款金额、频率,还能根据其账户情况给出相应的取款建议。美国一些基金公司在几年前开始借助社交媒体大数据,分析市场情绪变动,进而判
断未来交易是扩大还是萎缩。近期,这些基金公司进一步通过分析金融交易大数据,识别交易对手的交易特征,预判交易对手的交易动向,并采取相应的操作,以获取差价。

  防范欺诈。运用大数据分析软件,可以预防信用卡和借记卡欺诈。通过监控客户、账户和渠道等,提高银行在交易、转账和在线付款等领域防御欺诈的能力。在监控客户行为时,大数据可以识别出潜在的违规客户,提示银行工作人员对其予以重点关注,从而节省反欺诈监控资源。

改进内部效率。美国银行用大数据分析该银行某呼叫中心员工的行为,通过在员工姓名牌中置入感应器,监控员工的行走线路与交谈语气,可以知道员工在工作场所
的社交状况。监控结果表明,那些一起享受工间休息并相互交流的员工工作效率更高,他们可以在日常交流中分享如何应付“难缠”顾客的小窍门。美国银行发现这
一现象后,即转而推行集体工间休息,此后员工表现提升了23%,而员工说话语调所反映出的压力水平则下降了19%。另外,还有些欧美银行运用大数据评价分
支机构绩效并获得显著成效。

 
 大数据的应用存在运维风险和运营风险等,前者如数据丢失、数据泄露、数据非法篡改、数据整合过程中的信息不对称导致错误决策等,后者如企业声誉风险、数
据被对手获取后的经营风险等。因此,必须加强数据管控。这方面既有成功的经验,也有值得总结的教训。从已出现的问题看,最大的风险来自网络攻击和欺
诈:2011年,网络银行欺诈给日本53家银行造成2700亿日元(约合225亿元人民币)的损失;2012年,诈骗集团曾攻击欧美至少60家银行的网
络,盗取银行资金;2013年,国内某保险公司受黑客攻击,造成数十万保单信息泄露。为此,一是高度重视并推进统一的数据标准,并做好数据清洗,保证数据
质量。二是审慎划定数据边界,合理开展内外部数据共享和非核心数据业务外包。三是大数据下应更加重视隐私保护和信息安全,加大对反网络攻击的投入。

推动大数据应用的策略


 
 党的十八大提出坚持走中国特色新型工业化、信息化、城镇化、农业现代化道路,信息化已升级为国家战略。我国银行业加快大数据应用不仅具有行业意义,而且
对于推动我国信息化进程、服务“新四化”发展也有重要作用。我国银行业要从战略高度充分认识到大数据分析、运用的重要性,从管理体系建设、具体运用模式方
面不断探索,打造银行业在大数据时代的核心竞争力。

  建立完善的大数据工作管理体系。银行业应充分认识大数据的重要性,在总行层面建立大数据工作推进机制,制定大数据工作规划,主管数据部门对大数据工作进行统筹规划、组织协调、集中管理,业务部门承担大数据采集、分析和应用的职责,全面定义、收集、多方式整合集团内外部各类数据,形成管理数据、使用数据和推广数据的有效工作机制。

  增强数据挖掘与分析运用能力。在
银行内部全面推广基于数据进行决策、利用信息创造价值的观念,引进数据挖掘和大数据运用专业方法和工具,培养专业数据挖掘分析人才队伍,重视人才的经济金
融、数学建模、计算机新型算法等复合型技能,建立前瞻性的业务分析模型,把握、预测市场和客户行为,将数据深度运用到业务经营管理过程,利用数据来指导工
作,设计和制定政策、制度和措施,做到精准营销和精细管理。

 
 以大数据技术促进智慧银行建设。推动大数据向生产力转化,加快产品创新实验室的技术研发,把实验室成熟产品运用于客户的营销和服务,推进智慧银行建设,
把技术创新优势转化为竞争优势。网点服务要运用好大数据等技术成果,推广普及智能叫号预处理、远程银行VTM、电子银行服务区、智能互动桌面、人脸识别等
创新服务,将传统银行服务模式和创新科技有机结合,利用智能设备、数字媒体和人机交互技术为客户带来“自助、智能、智慧”的全新感受和体验。智慧网点在建
设推广中,还应充分采用用户交互技术和体验设备,吸引客户浏览、试用、比较各类金融产品,辅以工作人员推荐,从地域、客户、产品等多种维度,挖掘客户需
求,实现对合适客户、在合适时间、通过合适渠道、推荐合适产品。

 
 建立基于大数据分析的定价体系。当前,资金的交易变动频率和流动性加快,大数据从更宽广角度,预判负债的波动情况,能更灵活测算是否满足监管要求和贷款
需求变化,从而为银行以存定贷、以贷吸存策略提供量化支撑,可有效降低资金成本。银行还要运用大数据分析,建立起综合服务和信贷差异化定价体系,做到对不
同产品、不同行业、不同区域实施差别化定价,最终实现一户一策的综合化、差异化服务,提升精准营销水平。例如,将对公、对私客户逐步纳入定价系统,进行客
户选择,不同服务内容享受不同信贷优惠,达到差别化定价和客户最佳体验的双重目的。

 
 依托大数据技术提升风险管理水平。大数据能较好地解决传统信贷风险管理中的信息不对称难题,提升贷前风险判断和贷后风险预警能力,实现风险管理的精确化
和前瞻性。大数据时代,银行业可以打破信息孤岛,全面整合客户的多渠道交易数据,以及经营者个人金融、消费、行为等信息进行授信,降低信贷风险。如建设银
行依托“善融商务”开发出大数据信贷产品“善融贷”后,银行可实时监控社交网站、搜索引擎、物联网和电子商务等平台,跟踪分析客户的人际关系、情绪、兴趣
爱好、购物习惯等多方面信息,对其信用等级和还款意愿变化进行预判,在第一次发生信贷业务,缺乏信贷强变量情况下,及时用教育背景、过往经历等变量进行组
合分析,以建立起信贷风险预警机制。由历史数据分析转向行为分析,将对目前的风险管理模式产生巨大突破。

大数据是信息革命中非常前沿且快速发展的技术,银行业要抓紧解决内部数据挖掘分析和外部资源的安全整合利用问题,加快人才队伍建设和技术成果转化,通过大数据的高效应用,加速推进银行业的转型升级和可持续发展。

大数据时代银行业应对策略

时间: 2024-10-12 23:01:41

大数据时代银行业应对策略的相关文章

如何应对大数据时代

近些年来,大数据逐步渗透到现实生活,从医疗到信贷,可谓是各个行业.单从"大数据"这个词语来看,说明数据量很大.如果这些数据结果,不做处理,以单纯数字呈现,相信你看的超不过10秒中,你会头皮发麻.你都头皮发麻了,那我们的客户岂不更发麻,如果这个问题解决不了,将非常影响大数据的发展.由此一个职业必将会兴起,就是数据可视化工程师,而它的职责就是将大数据的结果做的一目了然,降低客户的阅读时间和阅读门槛.此教程将会尽快的完善起来,形成培养数据可视化工程师的经典网络教程.现在我们进入课程,如何应对

大数据时代新闻采编人员职业能力培训

原文  http://datameng.com/info/2014/03/big-data-xinwen-caibian/ 据统计,到2013年,全世界储存的信息如果记录在光盘上,再把这些光盘叠加起来,高度等于从地球到月球的距离.美国互联网数据中心指出,目前世界 上90%以上的数据是近几年才产生的.互联网上的数据每年将增加50%,每两年翻一番.因此有学者认为,人类进入了大数据时代.一般意义上,大数据是指无 法在可容忍的时间内用传统IT技术和软硬件工具对其进行感知.获取.管理.处理和服务的数据集合

大数据时代,银行BI应用的方案探讨

大数据被誉为21世纪发展创造的新动力,BI(商业智能)成为当下最热门的数据应用方案.据资料显示:当前中国大数据IT投资最高的为五个行业中,互联网最高.其次是电信.金融.政府和医疗.而在金融行业中,银行拨得头筹,其次才是证券和保险. 如何有效应用大数据.云计算等新信息技术,创造价值和财富,创造未来,是我们面临的巨大机遇和挑战. 下面把银行大数据应用做个详细全面的介绍. 一.大数据金融应用场景 从大数据技术特性以及银行近几年的应用探索来看,大数据在银行商业智能方面的应用主要体现在以下几个方面: 1.

大数据时代—— 一个创造超级竞争力企业的时代

这是一个快速发展的时代,随着互联网的普及,数据成指数倍增长,相同类型的企业也如雨后春笋般越来越多!那么如何在这个快速发展的时代,脱颖而出,把握时代的脉搏呢?答案就是:建立自己企业的大数据!提高企业的生存和竞争力,大数据无疑是一把利剑,通过数据分析,不仅可以让你知己知彼,更可以让自己的企业决胜千里之外,使企业在与同行竞争中,更具竞争力的一大利器,用的好,甚至能碾压竞争对手.大数据近年的崛起和发展已经初现其巨大的作用,据分析拥有优秀大数据能力的企业,做出正确决策的可能性高出竞争对手3倍.决策速度比竞

大数据时代与精准运维

 随着科技的进步,我们正步入一个新的时代,新常态下,由重视数量到更注重质量,以创新做为推动力,互联网+.工业4.0.中国制造2025.以及大数据.云计算科技迸发出全新活力,以人为本智能时代就要到来,智能连接.智能服务.智能制造,"连接一切,充分感知"是这个时代的特征.因此,利用这个时代的特定服务,企业家们精准掌舵,站在风口上的人,注定将是大时代的弄潮人. 什么是大数据 大数据,就是随着信息化技术的发展,特别是互联网技术的发展,积累了大量的信息数据资产,这些资产具有四个特点:第一,数

大数据时代如何保障数据安全

继互联网.物联网.云计算.大数据之后,大数据已经成为信息技术领域的一个热点,大数据不仅带来了大的价值,而且还存在着大的安全问题,其中一个最著名的例子就是用户隐私数据的披露,传统的信息安全手段和管理机制已经跟不上大数据时代信息安全形势的发展,那么如何构建我国大数据时代独立可控的大数据发展路径,以保证大数据时代的信息安全呢? 大数据的蓬勃发展,使得业界对于大数据安全问题的关注度日渐提升.不久前,中国信息通信研究院发布<大数据安全白皮书>,指出了当前大数据发展面临的安全问题,同时对推进大数据安全技术

LinkedIn高级分析师王益:大数据时代的理想主义和现实主义(图灵访谈)

转自:http://www.ituring.com.cn/article/75445 王益,LinkedIn高级分析师.他曾在腾讯担任广告算法和策略的技术总监,在此期间他发明了并行机器学习系统“孔雀”,它可以从数十亿的用户行为或文本数据中学习到上百万的潜在主题,该系统被应用在腾讯可计算广告业务中.在此之前,他在Google担任软件工程师,并开发了一个分布式机器学习工具,这个工具让他获得了2008年的“Google APAC 创新奖”.王益曾在清华大学和香港城市大学学习,并取得了清华大学机器学习和

决胜大数据时代:Hadoop&amp;Yarn&amp;Spark企业级最佳实践(8天完整版脱产式培训版本)

Hadoop.Yarn.Spark是企业构建生产环境下大数据中心的关键技术,也是大数据处理的核心技术,是每个云计算大数据工程师必修课. 课程简介 大数据时代的精髓技术在于Hadoop.Yarn.Spark,是大数据时代公司和个人必须掌握和使用的核心内容. Hadoop.Yarn.Spark是Yahoo!.阿里淘宝等公司公认的大数据时代的三大核心技术,是大数据处理的灵魂,是云计算大数据时代的技术命脉之所在,以Hadoop.Yarn.Spark为基石构建起来云计算大数据中心广泛运行于Yahoo!.阿

柯南君:看大数据时代下的IT架构(5)消息队列之RabbitMQ--案例(Work Queues起航)

一.回顾 让我们回顾一下,在上几章里都讲了什么?总结如下: <柯南君:看大数据时代下的IT架构(1)业界消息队列对比> <柯南君:看大数据时代下的IT架构(2)消息队列之RabbitMQ-基础概念详细介绍> <柯南君:看大数据时代下的IT架构(3)消息队列之RabbitMQ-安装.配置与监控> <柯南君:看大数据时代下的IT架构(4)消息队列之RabbitMQ--案例(Helloword起航)> 二.Work Queues(using the Java Cl