Spark: Could not find CoarseGrainedScheduler

 [shuffle-server-3] ERROR org.apache.spark.network.server.TransportRequestHandler - Error while invoking RpcHandler#receive() for one-way message.
org.apache.spark.SparkException: Could not find CoarseGrainedScheduler.
    at org.apache.spark.rpc.netty.Dispatcher.postMessage(Dispatcher.scala:154)
    at org.apache.spark.rpc.netty.Dispatcher.postOneWayMessage(Dispatcher.scala:134)
    at org.apache.spark.rpc.netty.NettyRpcHandler.receive(NettyRpcEnv.scala:571)
    at org.apache.spark.network.server.TransportRequestHandler.processOneWayMessage(TransportRequestHandler.java:180)
    at org.apache.spark.network.server.TransportRequestHandler.handle(TransportRequestHandler.java:109)
    at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:119)
    at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:51)
    at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
    at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
    at io.netty.handler.timeout.IdleStateHandler.channelRead(IdleStateHandler.java:266)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
    at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
    at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
    at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
    at org.apache.spark.network.util.TransportFrameDecoder.channelRead(TransportFrameDecoder.java:85)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
    at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
    at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846)
    at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131)
    at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
    at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
    at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
    at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
    at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEve

  It could be a resource problem. Try to increase the number of cores and executor and also to assign more RAM to the application then you should increase the partition number of your RDD by calling a repartition. The ideal number of partitions depends on previous settings. Hope this helps.

说明:程序中用到repartition前后不一致导致这个问题

问题:

ERROR scheduler.LiveListenerBus: SparkListenerBus has already stopped! Dropping event SparkListenerExecutorMetricsUpdate(1,WrappedArray())

因为spark没有关闭导致

时间: 2024-10-26 11:14:36

Spark: Could not find CoarseGrainedScheduler的相关文章

Spark on Yarn年度知识整理

大数据体系结构: Spark简介 Spark是整个BDAS的核心组件,是一个大数据分布式编程框架,不仅实现了MapReduce的算子map 函数和reduce函数及计算模型,还提供更为丰富的算子,如filter.join.groupByKey等.是一个用来实现快速而同用的集群计算的平台. Spark将分布式数据抽象为弹性分布式数据集(RDD),实现了应用任务调度.RPC.序列化和压缩,并为运行在其上的上层组件提供API.其底层采用Scala这种函数式语言书写而成,并且所提供的API深度借鉴Sca

Spark源码分析之五:Task调度(一)

在前四篇博文中,我们分析了Job提交运行总流程的第一阶段Stage划分与提交,它又被细化为三个分阶段: 1.Job的调度模型与运行反馈: 2.Stage划分: 3.Stage提交:对应TaskSet的生成. Stage划分与提交阶段主要是由DAGScheduler完成的,而DAGScheduler负责Job的逻辑调度,主要职责也即DAG图的分解,按照RDD间是否为shuffle dependency,将整个Job划分为一个个stage,并将每个stage转化为tasks的集合--TaskSet.

Spark on Yarn 架构解析

. 一.Hadoop Yarn组件介绍: 我们都知道yarn重构根本的思想,是将原有的JobTracker的两个主要功能资源管理器 和 任务调度监控 分离成单独的组件.新的架构使用全局管理所有应用程序的计算资源分配. 主要包含三个组件ResourceManager .NodeManager和ApplicationMaster以及一个核心概念Container. 1.ResourceManager(RM)  就是所谓的资源管理器,每个集群一个,实现全局的资源管理和任务调度.它可以处理客户端提交计算

Spark On YARN内存分配

本文转自:http://blog.javachen.com/2015/06/09/memory-in-spark-on-yarn.html?utm_source=tuicool 此文解决了Spark yarn-cluster模式运行时,内存不足的问题. Spark yarn-cluster模式运行时,注意yarn.app.mapreduce.am.resource.mb的设置.默认为1G Spark On YARN内存分配 本文主要了解Spark On YARN部署模式下的内存分配情况,因为没有

spark内核揭秘-06-TaskSceduler启动源码解析初体验

TaskScheduler实例对象启动源代码如下所示: 从上面代码可以看出来,taskScheduler的启动是在SparkContext 找到TaskSchedulerImpl实现类中的start方法实现: 1.从上代码看到,先启动CoarseGrainedSchedulerBackend, 从上面CoarseGrainedSchedulerBackend类的代码,可以看出spark启动了DriverActor,名称为CoarseGrainedScheduler,这是一个akka消息通信类,会

Apache Spark源码走读之7 -- Standalone部署方式分析

欢迎转载,转载请注明出处,徽沪一郎. 楔子 在Spark源码走读系列之2中曾经提到Spark能以Standalone的方式来运行cluster,但没有对Application的提交与具体运行流程做详细的分析,本文就这些问题做一个比较详细的分析,并且对在standalone模式下如何实现HA进行讲解. 没有HA的Standalone运行模式 先从比较简单的说起,所谓的没有ha是指master节点没有ha. 组成cluster的两大元素即Master和Worker.slave worker可以有1到

Spark on Yarn遇到的几个问题

1 概述 Spark的on Yarn模式.其资源分配是交给Yarn的ResourceManager来进行管理的.可是眼下的Spark版本号,Application日志的查看,仅仅能通过Yarn的yarn logs命令实现. 在部署和执行Spark Application的过程中,假设不注意一些小的细节,或许会导致一些问题的出现. 2 防火墙 部署好Spark的包和配置文件,on yarn的两种模式都无法执行,在NodeManager端的日志都是说Connection Refused,连接不上Dr

Spark分析之Standalone运行过程分析

一.集群启动过程--启动Master $SPARK_HOME/sbin/start-master.sh start-master.sh脚本关键内容: spark-daemon.sh start org.apache.spark.deploy.master.Master 1 --ip $SPARK_MASTER_IP --port $SPARK_MASTER_PORT --webui-port $SPARK_MASTER_WEBUI_PORT 日志信息:$SPARK_HOME/logs/ 14/0

Spark standalone下的运行过程

Spark的Cluster Manager可以有以下几种部署方式: 1. standalone 2. Mesos 3. YARN 4. EC2 5. Local 其中standalone方式是spark自带的部署方式,下面我们分别对没有HA的standalone模式和带有HA的standalone模式中application的提交与具体的运行流程进行一个比较详尽的分析. 没有HA的standalone运行模式 在cluster中,两种角色被定义分别是master和worker:slaver wo