Given two sequences of numbers : a11, a22, ...... , aNN, and b11, b22, ...... , bMM (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make aKK = b11, aK+1K+1 = b22, ...... , aK+M?1K+M?1 = bMM. If there are more than one K exist, output the smallest one.
InputThe first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a11, a22, ...... , aNN. The third line contains M integers which indicate b11, b22, ...... , bMM. All integers are in the range of ?1000000,1000000?1000000,1000000.
OutputFor each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1
Sample Output
6 -1题意:就是把字符串匹配变成了数组匹配题解:kmp就行(经典的看毛片算法)参考的这位大牛的博客,讲的很清楚http://blog.csdn.net/starstar1992/article/details/54913261
#include<map> #include<set> #include<cmath> #include<queue> #include<stack> #include<vector> #include<cstdio> #include<iomanip> #include<cstdlib> #include<cstring> #include<iostream> #include<algorithm> #define pi acos(-1) #define ll long long #define mod 1000000007 #define ls l,m,rt<<1 #define rs m+1,r,rt<<1|1 using namespace std; const double g=10.0,eps=1e-9; const int N=1000000+5,maxn=10000+5,inf=0x3f3f3f3f; int ext[N],str[maxn],ptr[N]; void getnext(int slen) { ext[0]=-1; int k=-1; for(int i=1;i<=slen-1;i++) { while(k>-1&&str[k+1]!=str[i])k=ext[k]; if(str[k+1]==str[i])k++; ext[i]=k; } } int kmp(int plen,int slen) { int k=-1; for(int i=0;i<=plen-1;i++) { while(k>-1&&str[k+1]!=ptr[i])k=ext[k]; if(str[k+1]==ptr[i])k++; if(k==slen-1)return i-slen+2; } return -1; } int main() { ios::sync_with_stdio(false); cin.tie(0); // cout<<setiosflags(ios::fixed)<<setprecision(2); int t,n,m; cin>>t; while(t--){ cin>>n>>m; for(int i=0;i<n;i++)cin>>ptr[i]; for(int i=0;i<m;i++)cin>>str[i]; getnext(m); cout<<kmp(n,m)<<endl; } return 0; }