Verilog篇(三)仿真原理

首先引入一个例子:

`timescale  1ns/100ps

module   TB;                                                                                       module  INV_DFF(Clock, Reset_n, DataIn, DataOut);

reg Ck, Rst_n, Din;                                                                                  input Clock;

wire Dout;                                                                                               input Reset_n;

//Clock  generation                                                                                  input DataIn;

initial   begin                                                                                           output reg Data_Out

Ck = 0;                                                                                   wire DataInv;

forever   #10 Ck = ~Ck;                                                           always @(posedge Clock or negedge Reset_n)

end                                                                                                           begin if(~Reset_n)

//Reset  generation                                                                                                            Data_Out <= 1‘b0;

initial   begin                                                                                                                  else Data_Out <= Data_Inv;

Rst_n = 1;                                                                                             end

#5 Rst_n = 0;                                                                          assign #3 DataInv = ~ DataIn;

#55 Rst = 1;                                                                        endmodule

end

//Data input generation

initial   begin

Din = 0;

#80 Din = 1;

#40 Din = 0;

end

INV_DFF     u_INV_DFF(                 //DUV

.Clock(Ck),

.Reset_n(Rst_n),

.DataIn(Din),

.DataOut(Dout),

);

0仿真时刻:3个initial进程和1个DUV同时执行。同时执行的进程其顺序不是固定的,和所用的仿真器有关,假设此处的同时执行,按代码中的顺序来执行。

执行Clock Generation 中的语句Ck = 0; ~Ck。 执行forever #10 进程挂起。

执行Reset Generation 中的语句Rst_n = 1; #5 进程挂起。

执行Data Input Generation中的语句Din = 0; #80 进程挂起。

执行DUV中的语句~DataIn; #3进程挂起。always @进程挂起。 至此0仿真时刻的语句全部执行完毕,仿真时间轴向前推进。

3仿真时刻:只有一个计算事件 DataInv = #3 ~DataIn;更新DataInv的值。无触发更多计算事件,所以仿真时间轴向前推进。

5仿真时刻:执行Reset Generation 中的语句 Rst_n = 0; #55 进程挂起。

由于Rst_n的更新时间,DUV中的always @进程执行,DataOut值更新。无触发更多计算事件,仿真时间轴向前推进。

10仿真时刻: 执行Clock Gneration 中的计算事件CK。更新事件触发。#10进程挂起。

执行DUV中的always进程,计算事件Data_Out = 0。无触发更多事件,仿真时间轴向前推进。

60仿真时刻: 执行Clock Gneration 中的计算事件CK。更新事件触发。#10进程挂起。

执行Reset Generation 中的语句 Rst_n = 1; 进程结束。

执行DUV中的always进程,计算事件Data_Out = 1(Rst_n的值已经为1)。无触发更多事件,仿真时间轴向前推进。

80仿真时刻: 执行Clock Gneration 中的计算事件CK。更新事件触发。#10进程挂起。

执行Data Input Generation中的语句Din = 1; #40 进程挂起。

执行DUV中的always进程,计算事件Data_Out = Data_Inv。

执行DUV中的语句~DataIn; #3进程挂起。always @进程挂起。 至此0仿真时刻的语句全部执行完毕,仿真时间轴向前推进。

仿真时间:是仿真时间维护的时间值,用来对仿真电路的真实时间进行建模(仿真时间和软件的执行时间没有任何联系),当仿真时间推进到某一个时间点时,该时间点就被称为当前仿真时间,而以后的任何时间都被称为将来仿真时间。

事件:模型中数值的变化,功能仿真是一种事件驱动的仿真,整个仿真过程都是围绕事件来组织的。

更新事件:在被仿真的电路中,线网或寄存器的值在任何进程中的任何改变都被认为是一个更新事件。

计算事件:由于更新事件产生的,进程的计算,计算事件。

计算事件和更新事件之间循环往复的互相触发,推动仿真时间的前进。

进程是Verilog中的独立执行单元,包括:原语(Primitives), 模块(Moules), initial过程块, always过程块, 连续赋值语句(assign), 异步任务(task)。在仿真时,所有的进程都是仿真器按Verilog的语义来顺序执行的,效果是各个进程并行执行的效果,在未执行完当前所有的进程时,仿真时间不会向前推进。

initial   begin

Ck = 0;  forever Ck = ~Ck;

end

例子会hang在仿真时刻0,因为更新时间一直触发计算事件,计算事件一直触发更新时间。

Verilog中的时序控制:事件语句(@),延时语句(#),等待语句(wait)。

Verilog仿真时的不确定性:在同一个仿真时间内,几个同一调度模块中事件执行顺序的任意性,进程之间语句的任意交织。

Verilog的事件调度:

注意:1,阻塞赋值和非阻塞赋值同处一个优先级,执行顺序随机或随仿真器。2,系统任务处于最低优先级,在该时刻的最后执行。

时间: 2024-11-10 20:31:02

Verilog篇(三)仿真原理的相关文章

CRC校验码的verilog实现与仿真结果

循环冗余校验码(CRC)的基本原理是: 将被处理的报文比特序列当做一个二进制多项式A(x)的系数,(任意一个由二进制位串组成的代码都可以和一个系数仅为'0'和'1'取值的多项式一一对应.例如:代码1010111对应的多项式为x6+x4+x2+x+1,而多项式为x5+x3+x2+x+1对应的代码101111),该系数乘以2^n(n为生成多项式g(x)中x的最高次幂)以后再除以发送方和接收方事先约定好的生成多项式g(x)后,求得的余数P(x)就是CRC校验码,把它副到原始的报文A(x)后面形成新的报

8.17_Linux之bash shell脚本编程入门篇(三)之循环以及函数function的使用

bash shell脚本编程入门篇(三)之循环 什么是循环执行? 将某代码段重复运行多次 重复运行多少次: 循环次数事先已知 循环次数事先未知 有进入条件和退出条件 相关命令:for, while, until,selet, for命令的使用 作用: 依次将列表中的元素赋值给"变量名"; 每次赋值后即执行一次循环体; 直到列表中的元素耗尽,循环结束 命令格式: for 变量名 in 列表; do 循环体(正常执行的执行命令) 语句1 语句2 语句3 ... done 列表生成方式: (

Python基础篇(三)

元组是序列的一种,与列表的区别是,元组是不能修改的. 元组一般是用圆括号括起来进行定义,如下: >>> (1,2,3)[1:2]     (2,) 如果元组中只有一个元素,元组的表示有些奇怪,末尾需要加上一个逗号: >>> (1,2,3)[1:2]     (2,) >>> 3*(3)      9      >>> 3*(3,)      (3, 3, 3) tuple函数 tuple函数用于将任意类型的序列转换为元组: >&

【基于WPF+OneNote+Oracle的中文图片识别系统阶段总结】之篇三:批量处理后的txt文件入库处理

篇一:WPF常用知识以及本项目设计总结:http://www.cnblogs.com/baiboy/p/wpf.html 篇二:基于OneNote难点突破和批量识别:http://www.cnblogs.com/baiboy/p/wpf1.html 篇三:批量处理后的txt文件入库处理:http://www.cnblogs.com/baiboy/p/wpf2.html 篇四:关于OneNote入库处理以及审核:http://www.cnblogs.com/baiboy/p/wpf3.html [

JAVA学习篇--JSP实现原理

JSP全称是Java Server Pages,它和servle技术一样,都是SUN公司定义的一种用于开发动态web资源的技术. 起源: 在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变.如果使用Servlet程序来输出只有局部内容需要动态改变的网页,其中所有的静态内容也需要程序员用Java程序代码产生,整个Servlet程序的代码将非常臃肿,编写和维护都将非常困难. 解决方案: 为了弥补Servlet的缺陷,SUN公司在Servlet的基础上推出了JSP(Java 

【SSRS】入门篇(三) -- 为报表定义数据集

原文:[SSRS]入门篇(三) -- 为报表定义数据集 通过前两篇文件 [SSRS]入门篇(一) -- 创建SSRS项目 和 [SSRS]入门篇(二) -- 建立数据源 后, 我们建立了一个SSRS项目,并取得数据源,那么接下来做的就是知道报表要显示什么数据了,这一步可以通过建立数据集来实现. 1.解决方案资源管理器 ->右键选择共享数据集 ->添加新数据集: 2.在共享数据集属性窗口输入数据集名称:AdventureWorksDataset:数据源选择之前建立的:AdventureWorks

backbonejs中的模型篇(三)

一:在模型中使用嵌套属性 Backbone的扩展插件 Backbone-Nested下载并添加引用 1:定义一个新的模型对象,使用Backbone.NestedModel作为其基类对象 var _model = Backbone.NestedModel.extend({...})                    var testObj = new _model() 2: 使用'.'操作符来获取或设置嵌套属性值 testObj.set({ 'name.title': 'Mr.', 'name

Java提高篇(三二)-----List总结

前面LZ已经充分介绍了有关于List接口的大部分知识,如ArrayList.LinkedList.Vector.Stack,通过这几个知识点可以对List接口有了比较深的了解了.只有通过归纳总结的知识才是你的知识.所以下面LZ就List接口做一个总结.推荐阅读: java提高篇(二一)-----ArrayList java提高篇(二二)-----LinkedList java提高篇(二九)-----Vector Java提高篇(三一)-----Stack 一.List接口概述 List接口,成为

【基于WinForm+Access局域网共享数据库的项目总结】之篇三:Access远程连接数据库和窗体打包部署

篇一:WinForm开发总体概述与技术实现 篇二:WinForm开发扇形图统计和Excel数据导出 篇三:Access远程连接数据库和窗体打包部署 [小记]:最近基于WinForm+Access数据库完成一个法律咨询管理系统.本系统要求类似网页后台管理效果,并且基于局域网内,完成多客户端操作同一数据库,根据权限不同分别执行不同功能模块.核心模块为级联统计类型管理.数据库咨询数据扇形统计.树的操作.咨询数据的管理.手写分页.Excel数据的导出.多用户操作服务器数据等.并支持多用户同时操作,远程连