【转载】Deep Belief Network

Deep Belief Network


为了更好的在下次讨论班讲述 DBN,特开此帖。主要是
介绍 DBN 的相关知识,做一份逻辑上完整的东西。参考
Hinton 的东西来讲吧:

reading list
RBM 相关
[1] 关于 Boltzmann machine 的 scholarwiki
[2] Haykin 书上第 11 章
[3] Duda 书上第 7 章
[4] RBM 的 exponential family 扩展
[5] RBM 的建模能力:作为 universal approximator

Contrastive Divergence 相关
[6] 提出 PoE 的文章,也是 CD 提出的文章
[7] 关于实践中 CD 的效果
[8] 收敛性分析

Helmholtz machine 相关
一个别人的 list
[9] 提出的概念
[10] 训练算法 wake-sleep

PoE 相关
[11] scholarwiki 上 Max Welling 的文章
[12] t-distr 的 PoE

DBN 相关
[13] NIPS2007 Tutorial on DBN
[14] Hinton 课堂 slides
[15] 哲学层面思考:深度是为了提高编码效率
[16] 快速学习算法:DBN + softmax
[17] 做维数约简
[18] 使用 DBN + GP 分类

其他相关文章
[19] Sigmoid belief network
[20] FoE
[21] FoE 原始的文章

简介
理解 DBN 分几个步骤,如何训练一个 DBN 每层的 RBM,
如何把这些 RBM 粘合起来,最后如何使用这些作为一个
belief network 解决实际问题。

RBM 是一个 PoE [6],因此也是一个特殊的 MRF,其学习由
于那个 normalization factor 造成困难,虽然可以用 MCMC
来解决,但是并不好(速度慢、方差大)。在 2002 年左右
Hinton 提出了基于 CD 的训练算法 [6] 取代原来的 MLE获得了
良好的效果,为什么会去做 RBM 可以参看关于 RBM 这个
universal approximator 的文章 [5]。

使用 deep architecture 的主要原因是 encoding efficiency [15],
使用多层需要用一个 greedy 算法 pretraining [16],这个算法
保证第一层上训练出来的隐层的分布作为第二层的显层输入
时可以提高边际似然 [16]。接着需要根据应用的类型对这个模型
进一步的 fine tune。

比如分类问题,可以引入一层 softmax 的 neuron [16],用其在
标注数据上的 loss 使用 BP 进行 fine tune(可能需要
Helmholtz machine 相关的方法 [10]);比如 dimensionaly
reduction [17],其实把原来的网络反过来就可以 reconstruction,
然后根据 reconstruction error 使用 BP;又比如

相关连接
ML project of super big cow soup
Hinton‘s page for the DBN project
Hinton‘s page for the Science paper
Hinton‘s reading list for DBN

研究问题
1. 是否可以用 nonparametric Bayesian method 改变 Boltzmann
machine?

时间: 2024-11-15 06:22:57

【转载】Deep Belief Network的相关文章

Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3

Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3 http://blog.csdn.net/sunbow0 第二章Deep Belief Network (深度信念网络) 3实例 3.1 測试数据 依照上例数据,或者新建图片识别数据. 3.2 DBN实例 //****************例2(读取固定样本:来源于经典优化算法測试函数Sphere Model)***********// //2 读取样本数据 Logge

Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2

Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2 http://blog.csdn.net/sunbow0 第二章Deep Belief Network (深度信念网络) 2基础及源代码解析 2.1 Deep Belief Network深度信念网络基础知识 1)综合基础知识參照: http://tieba.baidu.com/p/2895759455   http://wenku.baidu.com/link?url=

Deep Belief Network

Deep Belief Network3实例3.1 测试数据按照上例数据,或者新建图片识别数据. 3.2 DBN实例//****************例2(读取固定样本:来源于经典优化算法测试函数Sphere Model)***********// //2 读取样本数据 Logger.getRootLogger.setLevel(Level.WARN) valdata_path ="/user/huangmeiling/deeplearn/data1" valexamples =ww

Deep Belief Network简介——本质上是在做逐层无监督学习,每次学习一层网络结构再逐步加深网络

from:http://www.cnblogs.com/kemaswill/p/3266026.html 1. 多层神经网络存在的问题 常用的神经网络模型, 一般只包含输入层, 输出层和一个隐藏层: 理论上来说, 隐藏层越多, 模型的表达能力应该越强.但是, 当隐藏层数多于一层时, 如果我们使用随机值来初始化权重, 使用梯度下降来优化参数就会出现许多问题[1]: 如果初始权重值设置的过大, 则训练过程中权重值会落入局部最小值(而不是全局最小值). 如果初始的权重值设置的过小, 则在使用BP调整参

【转载】Project on Learning Deep Belief Nets

Project on Learning Deep Belief Nets Deep Belief Nets (DBN's) will be explained in the lecture on Oct 29. Instead of learning layers of features by backpropagating errors, they learn one layer at a time by trying to build a generative model of the da

【转载】How to build and run your first deep learning network

How to build and run your first deep learning network Step-by-step instruction on training your own neural network. by Pete Warden | @petewarden | Comments: 8 | July 23, 2014 Share on twitter Share on google_plusone_share Share on facebook Share on l

[转载]Deep Learning(深度学习)学习笔记整理

转载自:http://blog.csdn.net/zouxy09/article/details/8775360 感谢原作者:[email protected] 八.Deep learning训练过程 8.1.传统神经网络的训练方法为什么不能用在深度神经网络 BP算法作为传统训练多层网络的典型算法,实际上对仅含几层网络,该训练方法就已经很不理想.深度结构(涉及多个非线性处理单元层)非凸目标代价函数中普遍存在的局部最小是训练困难的主要来源. BP算法存在的问题: (1)梯度越来越稀疏:从顶层越往下

【论文笔记】Leveraging Datasets with Varying Annotations for Face Alignment via Deep Regression Network

參考文献: Zhang J, Kan M, Shan S, et al. Leveraging Datasets With Varying Annotations for Face Alignment via Deep Regression Network[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 3801-3809. 简单介绍 眼下网上发布的人脸关键点的数据集非常多,但标注标准却

论文笔记(2):A fast learning algorithm for deep belief nets.

论文笔记(2):A fast learning algorithm for deep belief nets. 这几天继续学习一篇论文,Hinton的A Fast Learning Algorithm for Deep Belief Nets.这篇论文一开始读起来是相当费劲的,学习了好几天才了解了相关的背景,慢慢的思路也开始清晰起来.DBN算法就是Wake-Sleep算法+RBM,但是论文对Wake-Sleep算法解释特别少.可能还要学习Wake-Sleep和RBM相关的的知识才能慢慢理解,今天