CNN训练自己的数据

1、准备数据

将自己的数据放到train  和 val 文件夹下,然后使用 create_imagefile.py 制作txt列表文件,生成train.txt和val.txt

2、使用 shell 脚本 create_mydata.sh 制作lmdb格式数据

3、通过脚本make_mydata_mean.sh制作均值文件mydata.binaryproto

4、修改网络配置proto文件和求解文件

note:

1、在用python代码读取数据时,如果出现 这个错误

[email protected]:~/source_tools/caffe/data/mydata$ python read_lmdb.py Traceback (most recent call last):
File "read_lmdb.py", line 7, in <module>
import lmdb
ImportError: No module named lmdb

那么用 pip install lmdb

时间: 2024-10-09 02:34:40

CNN训练自己的数据的相关文章

YOLO2解读,训练自己的数据及相关转载以供学习

https://pjreddie.com/darknet/yolo/ 具体安装及使用可以参考官方文档https://github.com/pjreddie/darknet http://blog.csdn.net/u012235274/article/details/52399425 caffe-yolo 训练http://blog.csdn.net/u012235274/article/details/52120152 caffe 版本 yolo 过程记录 YOLOv2 参数详解[net]//

caffe的学习和使用&#183;一」--使用caffe训练自己的数据

学习知识的一种方式是先会用然后再问为什么. 在安装完成caffe,根据caffe的提示下载完mnist训练测试数据,并且运行lenet训练模型之后,摆在眼前的问题就是我怎么用caffe训练自己的数据啊,mnist的数据通过脚本就可以下载创建成lmdb,我要训练自己的数据集该怎么做? 用caffe训练自己的数据,必须解决的问题有两个:1.如何输入数据, 2.如何定义输出 首先我们解决第一个问题:训练数据的输入,这里我们之介绍使用lmdb的方式 查看lenet的train_val.prototxt,

faster r-cnn 在CPU配置下训练自己的数据

因为没有GPU,所以在CPU下训练自己的数据,中间遇到了各种各样的坑,还好没有放弃,特以此文记录此过程. 1.在CPU下配置faster r-cnn,参考博客:http://blog.csdn.net/wjx2012yt/article/details/52197698#quote 2.在CPU下训练数据集,需要对py-faster-rcnn内的roi_pooling_layer和smooth_L1_loss_layer改为CPU版本, 并重新编译.这位博主对其进行了修改,可直接进行替换:htt

caffe再见之训练自己的数据

Caffe的数据格式采用leveldb或者lmdb格式 本文采用数据为已标定过的彩色图像,共1000张训练图共10个类别,200张测试图像10个类别,下载地址:http://pan.baidu.com/s/1hsvz4g8. 第一步:数据格式转换 1.编译conver_imageset,在\Caffe-Master\Build\x64\Release下生成convert_imageset.exe. 2.在根目录data文件下新建属于自己的数据集文件夹(主要是为了便于整理,具体位置可以根据自己需要

YOLOv3 训练自己的数据附优化与问题总结

YOLOv3 训练自己的数据附优化与问题总结 环境说明 系统:ubuntu16.04 显卡:Tesla k80 12G显存 python环境: 2.7 && 3.6 前提条件:cuda9.0 cudnn7.0 opencv3.4.0 安装cuda和cudnn教程 安装opencv3.4.0教程 实现YOLOV3的demo 首先安装darknet框架,官网链接 git clone https://github.com/pjreddie/darknet.git cd darknet vim M

机器学习数学基础及CNN训练注意事项

KKT理解: https://www.cnblogs.com/pursued-deer/p/7858122.html Numpy :  CNN训练相关: 贝塔和伽玛是网络学出来的 上一层的输出先求均值,在求方差,然后每个输出给它搞成正太分布 让一部分神经元随机失活 CNN推展案例: R-CNN FAST-rcnn 原文地址:https://www.cnblogs.com/fenglivoong/p/12559327.html

CNN训练Cifar-10技巧

关于数据集 Cifar-10是由Hinton的两个大弟子Alex Krizhevsky.Ilya Sutskever收集的一个用于普适物体识别的数据集.Cifar是加拿大牵头投资的一个先进科学项目研究所. 说白了,就是看你穷的没钱搞研究,就施舍给你.Hinton.Bengio和他的学生在2004年拿到了Cifar投资的少量资金,建立了神经计算和自适应感知项目. 这个项目结集了不少计算机科学家.生物学家.电气工程师.神经科学家.物理学家.心理学家,加速推动了DL的进程.从这个阵容来看,DL已经和M

DeepLearning (五) 基于Keras的CNN 训练cifar-10 数据库

数据库介绍 开发工具 网络框架 训练结果 训练要点 激活函数 Dropout 的作用 训练代码 [原创]Liu_LongPo 转载请注明出处[CSDN]http://blog.csdn.net/llp1992 数据库介绍 Cifar-10是由Hinton的两个大弟子Alex Krizhevsky.Ilya Sutskever收集的一个用于普适物体识别的数据集. Cifar-10由60000张32*32的RGB彩色图片构成,共10个分类.50000张训练,10000张测试(交叉验证).这个数据集最

caffe的训练之一,数据的组织。

本教程为了那些第一次使用caffe框架进行深度学习训练的人而生的,我来一个简单关于caffe训练数据的组织来个简单的介绍.我们都知道caffe中使用leveldb 和lmd两种方式进行组织数据.这里介绍一种使用lmd进行训练数据组织的方式. 我来贴一段简单的代码 组织数据. 1.     lmd的打开和写入数据 定义环境lmd的环境 MDB_env *mdb_env; MDB_dbi mdb_dbi; MDB_val mdb_key, mdb_data; MDB_txn *mdb_txn; 打开