Brief Tour of the Standard Library

10.1. Operating System Interface

The os module provides dozens of functions for interacting with the operating system:

>>>

>>> import os
>>> os.getcwd()      # Return the current working directory
‘C:\\Python34‘
>>> os.chdir(‘/server/accesslogs‘)   # Change current working directory
>>> os.system(‘mkdir today‘)   # Run the command mkdir in the system shell
0

Be sure to use the import os style instead of from os import *. This will keep os.open() from shadowing the built-in open() function which operates much differently.

The built-in dir() and help() functions are useful as interactive aids for working with large modules like os:

>>>

>>> import os
>>> dir(os)
<returns a list of all module functions>
>>> help(os)
<returns an extensive manual page created from the module‘s docstrings>

For daily file and directory management tasks, the shutil module provides a higher level interface that is easier to use:

>>>

>>> import shutil
>>> shutil.copyfile(‘data.db‘, ‘archive.db‘)
‘archive.db‘
>>> shutil.move(‘/build/executables‘, ‘installdir‘)
‘installdir‘

10.2. File Wildcards

The glob module provides a function for making file lists from directory wildcard searches:

>>>

>>> import glob
>>> glob.glob(‘*.py‘)
[‘primes.py‘, ‘random.py‘, ‘quote.py‘]

10.3. Command Line Arguments

Common utility scripts often need to process command line arguments. These arguments are stored in the sys module’s argv attribute as a list. For instance the following output results from running python demo.py one two three at the command line:

>>>

>>> import sys
>>> print(sys.argv)
[‘demo.py‘, ‘one‘, ‘two‘, ‘three‘]

The getopt module processes sys.argv using the conventions of the Unix getopt() function. More powerful and flexible command line processing is provided by theargparse module.

10.4. Error Output Redirection and Program Termination

The sys module also has attributes for stdinstdout, and stderr. The latter is useful for emitting warnings and error messages to make them visible even when stdouthas been redirected:

>>>

>>> sys.stderr.write(‘Warning, log file not found starting a new one\n‘)
Warning, log file not found starting a new one

The most direct way to terminate a script is to use sys.exit().

10.5. String Pattern Matching

The re module provides regular expression tools for advanced string processing. For complex matching and manipulation, regular expressions offer succinct, optimized solutions:

>>>

>>> import re
>>> re.findall(r‘\bf[a-z]*‘, ‘which foot or hand fell fastest‘)
[‘foot‘, ‘fell‘, ‘fastest‘]
>>> re.sub(r‘(\b[a-z]+) \1‘, r‘\1‘, ‘cat in the the hat‘)
‘cat in the hat‘

When only simple capabilities are needed, string methods are preferred because they are easier to read and debug:

>>>

>>> ‘tea for too‘.replace(‘too‘, ‘two‘)
‘tea for two‘

10.6. Mathematics

The math module gives access to the underlying C library functions for floating point math:

>>>

>>> import math
>>> math.cos(math.pi / 4)
0.70710678118654757
>>> math.log(1024, 2)
10.0

The random module provides tools for making random selections:

>>>

>>> import random
>>> random.choice([‘apple‘, ‘pear‘, ‘banana‘])
‘apple‘
>>> random.sample(range(100), 10)   # sampling without replacement
[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]
>>> random.random()    # random float
0.17970987693706186
>>> random.randrange(6)    # random integer chosen from range(6)
4

The statistics module calculates basic statistical properties (the mean, median, variance, etc.) of numeric data:

>>>

>>> import statistics
>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
>>> statistics.mean(data)
1.6071428571428572
>>> statistics.median(data)
1.25
>>> statistics.variance(data)
1.3720238095238095

The SciPy project <http://scipy.org> has many other modules for numerical computations.

10.7. Internet Access

There are a number of modules for accessing the internet and processing internet protocols. Two of the simplest are urllib.request for retrieving data from URLs and smtplib for sending mail:

>>>

>>> from urllib.request import urlopen
>>> with urlopen(‘http://tycho.usno.navy.mil/cgi-bin/timer.pl‘) as response:
...     for line in response:
...         line = line.decode(‘utf-8‘)  # Decoding the binary data to text.
...         if ‘EST‘ in line or ‘EDT‘ in line:  # look for Eastern Time
...             print(line)

<BR>Nov. 25, 09:43:32 PM EST

>>> import smtplib
>>> server = smtplib.SMTP(‘localhost‘)
>>> server.sendmail(‘[email protected]‘, ‘[email protected]‘,
... """To: [email protected]
... From: [email protected]
...
... Beware the Ides of March.
... """)
>>> server.quit()

(Note that the second example needs a mailserver running on localhost.)

10.8. Dates and Times

The datetime module supplies classes for manipulating dates and times in both simple and complex ways. While date and time arithmetic is supported, the focus of the implementation is on efficient member extraction for output formatting and manipulation. The module also supports objects that are timezone aware.

>>>

>>> # dates are easily constructed and formatted
>>> from datetime import date
>>> now = date.today()
>>> now
datetime.date(2003, 12, 2)
>>> now.strftime("%m-%d-%y. %d %b %Y is a %A on the %d day of %B.")
‘12-02-03. 02 Dec 2003 is a Tuesday on the 02 day of December.‘

>>> # dates support calendar arithmetic
>>> birthday = date(1964, 7, 31)
>>> age = now - birthday
>>> age.days
14368

10.9. Data Compression

Common data archiving and compression formats are directly supported by modules including: zlibgzipbz2lzmazipfile and tarfile.

>>>

>>> import zlib
>>> s = b‘witch which has which witches wrist watch‘
>>> len(s)
41
>>> t = zlib.compress(s)
>>> len(t)
37
>>> zlib.decompress(t)
b‘witch which has which witches wrist watch‘
>>> zlib.crc32(s)
226805979

10.10. Performance Measurement

Some Python users develop a deep interest in knowing the relative performance of different approaches to the same problem. Python provides a measurement tool that answers those questions immediately.

For example, it may be tempting to use the tuple packing and unpacking feature instead of the traditional approach to swapping arguments. The timeit module quickly demonstrates a modest performance advantage:

>>>

>>> from timeit import Timer
>>> Timer(‘t=a; a=b; b=t‘, ‘a=1; b=2‘).timeit()
0.57535828626024577
>>> Timer(‘a,b = b,a‘, ‘a=1; b=2‘).timeit()
0.54962537085770791

In contrast to timeit‘s fine level of granularity, the profile and pstats modules provide tools for identifying time critical sections in larger blocks of code.

10.11. Quality Control

One approach for developing high quality software is to write tests for each function as it is developed and to run those tests frequently during the development process.

The doctest module provides a tool for scanning a module and validating tests embedded in a program’s docstrings. Test construction is as simple as cutting-and-pasting a typical call along with its results into the docstring. This improves the documentation by providing the user with an example and it allows the doctest module to make sure the code remains true to the documentation:

def average(values):
    """Computes the arithmetic mean of a list of numbers.

    >>> print(average([20, 30, 70]))
    40.0
    """
    return sum(values) / len(values)

import doctest
doctest.testmod()   # automatically validate the embedded tests

The unittest module is not as effortless as the doctest module, but it allows a more comprehensive set of tests to be maintained in a separate file:

import unittest

class TestStatisticalFunctions(unittest.TestCase):

    def test_average(self):
        self.assertEqual(average([20, 30, 70]), 40.0)
        self.assertEqual(round(average([1, 5, 7]), 1), 4.3)
        with self.assertRaises(ZeroDivisionError):
            average([])
        with self.assertRaises(TypeError):
            average(20, 30, 70)

unittest.main() # Calling from the command line invokes all tests

10.12. Batteries Included

Python has a “batteries included” philosophy. This is best seen through the sophisticated and robust capabilities of its larger packages. For example:

  • The xmlrpc.client and xmlrpc.server modules make implementing remote procedure calls into an almost trivial task. Despite the modules names, no direct knowledge or handling of XML is needed.
  • The email package is a library for managing email messages, including MIME and other RFC 2822-based message documents. Unlike smtplib and poplibwhich actually send and receive messages, the email package has a complete toolset for building or decoding complex message structures (including attachments) and for implementing internet encoding and header protocols.
  • The json package provides robust support for parsing this popular data interchange format. The csv module supports direct reading and writing of files in Comma-Separated Value format, commonly supported by databases and spreadsheets. XML processing is supported by the xml.etree.ElementTree,xml.dom and xml.sax packages. Together, these modules and packages greatly simplify data interchange between Python applications and other tools.
  • The sqlite3 module is a wrapper for the SQLite database library, providing a persistent database that can be updated and accessed using slightly nonstandard SQL syntax.
  • Internationalization is supported by a number of modules including gettextlocale, and the codecs package.
时间: 2024-12-05 13:12:34

Brief Tour of the Standard Library的相关文章

Python Tutorial学习(十一)-- Brief Tour of the Standard Library – Part II

11.1. Output Formatting 格式化输出 The repr module provides a version of repr() customized for abbreviated displays of large or deeply nested containers: >>> import repr >>> repr.repr(set('supercalifragilisticexpialidocious')) "set(['a',

boost::bind实践2——来自《Beyond the C++ Standard Library ( An Introduction to Boost )》

直接代码: 代码段1: 1 #include <iostream> 2 #include <string> 3 #include <boost/bind/bind.hpp> 4 5 class some_class 6 { 7 public: 8 typedef void result_type; 9 void print_string(const std::string& s) const 10 { std::cout << s <<

boost::function实践——来自《Beyond the C++ Standard Library ( An Introduction to Boost )》

代码段1: 1 #include <boost/function.hpp> 2 #include <iostream> 3 4 5 float mul_ints(int x, int y) { return ((float)x) * y; } 6 struct int_div { 7 float operator()(int x, int y) const { return ((float)x)/y; }; 8 }; 9 10 int main() 11 { 12 boost::f

[RK_2014_1024][C++_01]C++ Standard Library

1 Standard headers 1.1 Containers 1.2 General 1.3 Localization 1.4 Strings 1.5 Streams and Input/Output 1.6 Language support 1.7 Thread support library 1.8 Numerics library 1.9 C standard library 2.本文网址[tom-and-jerry发布于2014-10-24 14:23] http://www.cn

Beyond the C++ Standard Library中文版pdf

下载地址:网盘下载 内容简介  · · · · · · Introducing the Boost libraries: the next breakthrough in C++ programming Boost takes you far beyond the C++ Standard Library, making C++ programming more elegant, robust, and productive. Now, for the first time, a leading

C++学习书籍推荐《The C++ Standard Library 2nd》下载

百度云及其他网盘下载地址:点我 编辑推荐 经典C++教程十年新版再现,众多C++高手和读者好评如潮 畅销全球.经久不衰的C++ STL鸿篇巨著 C++程序员案头必 备的STL参考手册 全面涵盖C++11新标准 名人推荐 在C++的著作当中,这本书的地位是无可替代的.要成为合格的C++开发者,就必须掌握C++标准库,而要掌握C++标准库,这本书可以说是不二法门.这本书最了不起的地方,就在于面对庞大复杂的C++标准库,能够抽丝剥茧,化难为易,引导读者循序渐进,深入浅出地掌握C++标准库. --孟岩 

C++, standard library

0. 1. Standard library header <algorithm> #include <algorithm> // for sort std::array<int,10> s = {5,7,2,8,6,1,9,0,3}; // initial an array std::sort(s.begin(), s.end()); // sort the array 原文地址:https://www.cnblogs.com/sarah-zhang/p/122937

Publish .net standard library with all it&#39;s dependencies?

Publish .net standard library with all it's dependencies? 回答1 At the time of writing, it looks like it's by design and there's quite some fuss and confusion about it, see logged issue on GitHub. Moreover, when publishing a NuGet package for project A

一篇很好的解释了.Net Core, .Net Framework, .Net standard library, Xamarin 之间关系的文章 (转载)

Introducing .NET Standard In my last post, I talked about how we want to make porting to .NET Core easier. In this post, I’ll focus on how we’re making this plan a reality with .NET Standard. We’ll cover which APIs we plan to include, how cross-frame