HashMap 源码分析

package java.util;

import java.io.IOException;
import java.io.Serializable;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.Function;

/**
 * 1)基于哈希表的 Map 接口实现,允许使用 null 键和 null 值。
 * 2)假定哈希函数将元素均匀地分布在各个桶中,HashMap 的 get 和 put 方法提供稳定的性能。
 * 3)影响 HashMap 性能的两个参数:初始容量和加载因子,当元素个数超出初始容量和加载因子乘积时,
 * 将进行扩容,哈希表将具有大约两倍的桶数。默认的初始容量为 16,默认的加载因子为 0.75,当需要添加大量元素时,
 * 提供合适的初始容量和加载因子可以避免频繁的 rehash 操作以提高性能。
 * 4)HashMap 不是线程安全的,HashMap 视图方法返回的迭代器都是快速失败的,面对并发修改,HashMap 将抛出 ConcurrentModificationException 异常。
 */
public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable {

private static final long serialVersionUID = 362498820763181265L;

/**
     * The default initial capacity - MUST be a power of two.
     * 默认初始容量,必须是 2 的幂
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

/**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<30.
     * 最大容量,如果通过构造函数指定的初始容量大于 1<<30
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

/**
     * The load factor used when none specified in constructor.
     * 默认的加载因子【在构造函数中未指定时使用】
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

/**
     * The bin count threshold for using a tree rather than list for a
     * bin.  Bins are converted to trees when adding an element to a
     * bin with at least this many nodes. The value must be greater
     * than 2 and should be at least 8 to mesh with assumptions in
     * tree removal about conversion back to plain bins upon
     * shrinkage.
     * 单向链表转换为红黑树的长度阈值
     */
    static final int TREEIFY_THRESHOLD = 8;

/**
     * The bin count threshold for untreeifying a (split) bin during a
     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
     * most 6 to mesh with shrinkage detection under removal.
     * 红黑树转换为单向链表的阈值
     */
    static final int UNTREEIFY_THRESHOLD = 6;

/**
     * The smallest table capacity for which bins may be treeified.
     * (Otherwise the table is resized if too many nodes in a bin.)
     * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
     * between resizing and treeification thresholds.
     * 单向链表转换为红黑树时,必须达到的最小表容量【hash 桶的个数】
     */
    static final int MIN_TREEIFY_CAPACITY = 64;

/**
     * Basic hash bin node, used for most entries.  (See below for
     * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
     * 单向链表节点
     */
    static class Node<K,V> implements Map.Entry<K,V> {
        // 节点哈希值
        final int hash;
        // 节点键
        final K key;
        // 节点值
        V value;
        // 下一个节点
        Node<K,V> next;

Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

/* ---------------- Static utilities -------------- */
    /**
     * 计算键的哈希值
     */
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

/**
     * Returns x‘s Class if it is of the form "class C implements
     * Comparable<C>", else null.
     * 如果 x 实现了 Comparable 接口,则返回其 Class 对象,否则返回 null
     */
    static Class<?> comparableClassFor(Object x) {
        if (x instanceof Comparable) {
            Class<?> c; Type[] ts, as; ParameterizedType p;
            if ((c = x.getClass()) == String.class) // bypass checks
                return c;
            // 获取 x 所实现接口的 Type 数组
            if ((ts = c.getGenericInterfaces()) != null) {
                for (Type t : ts) {
                    /**
                     * 如果 t 是一个参数化类型,并且声明此参数化类型的接口名称为 Comparable,
                     * 并且参数化类型的实际类型参数不为 null 并且长度为 1 并且实际类型为 c
                     */
                    if ((t instanceof ParameterizedType) &&
                        ((p = (ParameterizedType) t).getRawType() ==
                         Comparable.class) &&
                        (as = p.getActualTypeArguments()) != null &&
                        as.length == 1 && as[0] == c) // type arg is c
                        return c;
                }
            }
        }
        return null;
    }

/**
     * Returns k.compareTo(x) if x matches kc (k‘s screened comparable
     * class), else 0.
     */
    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
    static int compareComparables(Class<?> kc, Object k, Object x) {
        return (x == null || x.getClass() != kc ? 0 :
                ((Comparable)k).compareTo(x));
    }

/**
     * Returns a power of two size for the given target capacity.
     * 基于目标容量计算 2 的幂
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

/* ---------------- Fields -------------- */

/**
     * The table, initialized on first use, and resized as
     * necessary. When allocated, length is always a power of two.
     * (We also tolerate length zero in some operations to allow
     * bootstrapping mechanics that are currently not needed.)
     * 哈希表,在第一次使用时初始化并且按需进行扩容,当完成分配时,长度总是
     * 2 的幂
     */
    transient Node<K,V>[] table;

/**
     * Holds cached entrySet(). Note that AbstractMap fields are used
     * for keySet() and values().
     */
    transient Set<Map.Entry<K,V>> entrySet;

/**
     * The number of key-value mappings contained in this map.
     * HashMap 中键值对的个数
     */
    transient int size;

/**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     * HashMap 被结构化修改的次数
     */
    transient int modCount;

/**
     * The next size value at which to resize (capacity * load factor).
     * 下一次执行 rehash 操作的元素阈值
     * @serial
     */
    int threshold;

/**
     * The load factor for the hash table.
     * 哈希表的加载因子
     * @serial
     */
    final float loadFactor;

/* ---------------- Public operations -------------- */

/**
     * Constructs an empty {@code HashMap} with the specified initial
     * capacity and load factor.
     * 创建初始容量为 tableSizeFor(initialCapacity),加载因子为 loadFactor 的 HashMap 实例
     */
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

/**
     * Constructs an empty {@code HashMap} with the specified initial
     * capacity and the default load factor (0.75).
     * 创建初始容量为 tableSizeFor(initialCapacity),加载因子为 0.75 的 HashMap 实例
     */
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

/**
     * Constructs an empty {@code HashMap} with the default initial capacity
     * (16) and the default load factor (0.75).
     * 创建初始容量为 16,加载因子为 loadFactor 的 HashMap 实例
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

/**
     * Constructs a new {@code HashMap} with the same mappings as the
     * specified {@code Map}.  The {@code HashMap} is created with
     * default load factor (0.75) and an initial capacity sufficient to
     * hold the mappings in the specified {@code Map}.
     * 基于形参 m 创建加载因子为 0.75 的 HashMap 实例
     */
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

/**
     * Implements Map.putAll and Map constructor.
     *
     * @param evict 初始化构造 HashMap 时为 false,插入元素后为 true。
     */
    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            if (table == null) { // pre-size
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                         (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);
            }
            else if (s > threshold)
                resize();
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

/**
     * Returns the number of key-value mappings in this map.
     * 返回哈希表中键值对的数目
     */
    public int size() {
        return size;
    }

/**
     * Returns {@code true} if this map contains no key-value mappings.
     * 哈希表是否为空
     */
    public boolean isEmpty() {
        return size == 0;
    }

/**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
     * key.equals(k))}, then this method returns {@code v}; otherwise
     * it returns {@code null}.  (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i>
     * indicate that the map contains no mapping for the key; it‘s also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     * 根据指定的键,获取对应的值,键不存在或键映射的值为 null 时,返回 null,否则返回具体的值
     * @see #put(Object, Object)
     */
    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

/**
     * Implements Map.get and related methods.
     * 根据哈希值和 key 获取节点
     */
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        // 哈希表不为 null,哈希表的长度 > 0,目标哈希值映射到的 bucket 不为 null。
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            /**
             * 第一个节点的哈希值和目标哈希值相等,并且节点的键和目标键引用相等或
             * 目标键不为 null 并且节点键和目标键 equals 相等【第一个节点即为目标节点】。
             */
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            // 获取第二个节点
            if ((e = first.next) != null) {
                // 如果是一颗红黑树,则执行树节点的获取操作
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    // 递归遍历单链表的所有节点
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

/**
     * Returns {@code true} if this map contains a mapping for the
     * specified key.
     * HashMap 是否包含指定的键
     */
    public boolean containsKey(Object key) {
        return getNode(hash(key), key) != null;
    }

/**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for the key, the old
     * value is replaced.
     * 往 HashMap 中插入新的键值对,如果键已经存在,则替换旧值
     */
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

/**
     * Implements Map.put and related methods.
     *
     * @param hash hash for key【键的哈希值】
     * @param key the key【键对象】
     * @param value the value to put【映射的值】
     * @param onlyIfAbsent if true, don‘t change existing value【如果为 true,则不覆盖已经存在的值】
     * @param evict if false, the table is in creation mode.【如果为 false,则哈希表在创建模式】
     * @return previous value, or null if none
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        // 如果 table 为 null,或长度为 0,则执行扩容操作
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        // 哈希值映射的 bucket 为 null,则创建新的单链表节点
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            /**
             * 第一个节点的哈希值和目标哈希值相等,节点的键和目标键引用相等或 equals 相等,
             * 第一个节点就是目标节点。
             */
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            // 如果节点是红黑树
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                // 统计单链表元素个数
                for (int binCount = 0; ; ++binCount) {
                    // 当前节点的 next 为 null,则创建单链表节点
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        // 如果单链表节点的个数大于 8,则尝试树化
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    // 如果找到目标节点,则直接退出循环
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    // 更新迭代节点
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key【键已经存在映射】
                V oldValue = e.value;
                // 允许覆盖旧值或旧值为 null,则更新为新值
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                // LinkedHashMap 的钩子函数
                afterNodeAccess(e);
                // 返回旧值
                return oldValue;
            }
        }
        ++modCount;
        // 自增 size 值之后如果超出哈希表扩容阈值,则执行扩容操作
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

/**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     *
     * @return the table
     */
    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        // 获取旧 table 的长度
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        // 获取旧的扩容阈值
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            /**
             * 旧 table 的长度大于等于 1<<30,则扩容阈值设置为 Integer.MAX_VALUE,并直接返回,
             * table 的容量不再发生变化。
             */
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            // 基于旧 table 容量执行双倍扩容,并且新的容量小于 1<<30 并且旧容量 >= 16
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                // 扩容阈值扩大为原来的两倍
                newThr = oldThr << 1; // double threshold
        }
        // oldCap <= 0 && oldThr > 0 第一次新增元素
        else if (oldThr > 0) // initial capacity was placed in threshold
            // 构造函数指定了初始化容量
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            /**
             * oldCap <=0 && oldThr <=0
             */
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        // 新的扩容阈值为 0,则重新计算扩容阈值
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        // 基于新的容量创建 table
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        // 旧 table 不为 null,则需要执行数据迁移
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                // table 上的 bucket 有元素
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    // 如果只有单个节点,则将其直接 rehash 到新的 bucket 上
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    // 如果是一个红黑树
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        // 如果是一个单向链表
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            // 获取第二个节点
                            next = e.next;
                            /**
                             * 键的哈希值 < oldCap,则 bucket 的索引保持不变
                             */
                            if ((e.hash & oldCap) == 0) {
                                // 迁移第一个元素,则将 e 设置为 loHead
                                if (loTail == null)
                                    // 更新头节点
                                    loHead = e;
                                else
                                    // 更新尾节点的后置节点为 e
                                    loTail.next = e;
                                // 新的尾节点为 e
                                loTail = e;
                            }
                            else {
                                /**
                                 * 键的哈希值 > oldCap,则 bucket 的索引更新为【原索引+oldCap】
                                 */
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        // 遍历处理单向链表的每个节点
                        } while ((e = next) != null);
                        // 将哈希值 < oldCap 的单向链表赋值到 bucket 上
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        // 将哈希值 > oldCap 的单向链表赋值到 bucket+oldCap 上
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        // 扩容完毕返回新的 table
        return newTab;
    }

/**
     * Replaces all linked nodes in bin at index for given hash unless
     * table is too small, in which case resizes instead.
     */
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        /**
         * 哈希表为 null,或 table 的长度小于 64,则执行 table 的扩容
         */
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        // 否则执行单向链表的树化
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
                /**
                 * 将单向链表中的所有节点都转换为树节点,并保持单向链表结构,
                 * 兼容 Jdk1.7 及以前的 HashMap,方便查找和消费
                 */
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    // 设置第一个树节点
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                // 执行红黑树化操作
                hd.treeify(tab);
        }
    }

/**
     * Copies all of the mappings from the specified map to this map.
     * These mappings will replace any mappings that this map had for
     * any of the keys currently in the specified map.
     */
    public void putAll(Map<? extends K, ? extends V> m) {
        putMapEntries(m, true);
    }

/**
     * Removes the mapping for the specified key from this map if present.
     * 移除目标键,并返回其值,如果节点不存在,则返回 null
     */
    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }

/**
     * Implements Map.remove and related methods.
     *
     * @param hash hash for key【键的哈希值】
     * @param key the key【键对象】
     * @param value the value to match if matchValue, else ignored【值对象】
     * @param matchValue if true only remove if value is equal【为 true 时,只有当值相等时才移除】
     * @param movable if false do not move other nodes while removing【为 false 时,不移除其他的节点】
     * @return the node, or null if none
     */
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            // 基于目标哈希值能找到 bucket
            Node<K,V> node = null, e; K k; V v;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            // 如果目标节点存在
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                // 如果是单向链表第一个节点
                else if (node == p)
                    tab[index] = node.next;
                else
                // 如果是单向链表中间节点    
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

/**
     * Removes all of the mappings from this map.
     * The map will be empty after this call returns.
     */
    public void clear() {
        Node<K,V>[] tab;
        modCount++;
        /**
         * 将所有的 bucket 都置为 null
         */
        if ((tab = table) != null && size > 0) {
            size = 0;
            for (int i = 0; i < tab.length; ++i)
                tab[i] = null;
        }
    }

/**
     * Returns {@code true} if this map maps one or more keys to the
     * specified value.
     * HashMap 包含指定的值
     */
    public boolean containsValue(Object value) {
        Node<K,V>[] tab; V v;
        if ((tab = table) != null && size > 0) {
            for (Node<K,V> e : tab) {
                for (; e != null; e = e.next) {
                    if ((v = e.value) == value ||
                        (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }

/**
     * Returns a {@link Set} view of the keys contained in this map.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  If the map is modified
     * while an iteration over the set is in progress (except through
     * the iterator‘s own {@code remove} operation), the results of
     * the iteration are undefined.  The set supports element removal,
     * which removes the corresponding mapping from the map, via the
     * {@code Iterator.remove}, {@code Set.remove},
     * {@code removeAll}, {@code retainAll}, and {@code clear}
     * operations.  It does not support the {@code add} or {@code addAll}
     * operations.
     * 返回 HashMap 键集合
     */
    public Set<K> keySet() {
        Set<K> ks = keySet;
        if (ks == null) {
            ks = new KeySet();
            keySet = ks;
        }
        return ks;
    }

final class KeySet extends AbstractSet<K> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<K> iterator()     { return new KeyIterator(); }
        public final boolean contains(Object o) { return containsKey(o); }
        public final boolean remove(Object key) {
            return removeNode(hash(key), key, null, false, true) != null;
        }
        public final Spliterator<K> spliterator() {
            return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super K> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (Node<K,V> e : tab) {
                    for (; e != null; e = e.next)
                        action.accept(e.key);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

/**
     * Returns a {@link Collection} view of the values contained in this map.
     * The collection is backed by the map, so changes to the map are
     * reflected in the collection, and vice-versa.  If the map is
     * modified while an iteration over the collection is in progress
     * (except through the iterator‘s own {@code remove} operation),
     * the results of the iteration are undefined.  The collection
     * supports element removal, which removes the corresponding
     * mapping from the map, via the {@code Iterator.remove},
     * {@code Collection.remove}, {@code removeAll},
     * {@code retainAll} and {@code clear} operations.  It does not
     * support the {@code add} or {@code addAll} operations.
     *
     * @return a view of the values contained in this map
     */
    public Collection<V> values() {
        Collection<V> vs = values;
        if (vs == null) {
            vs = new Values();
            values = vs;
        }
        return vs;
    }

final class Values extends AbstractCollection<V> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<V> iterator()     { return new ValueIterator(); }
        public final boolean contains(Object o) { return containsValue(o); }
        public final Spliterator<V> spliterator() {
            return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super V> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (Node<K,V> e : tab) {
                    for (; e != null; e = e.next)
                        action.accept(e.value);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

/**
     * Returns a {@link Set} view of the mappings contained in this map.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  If the map is modified
     * while an iteration over the set is in progress (except through
     * the iterator‘s own {@code remove} operation, or through the
     * {@code setValue} operation on a map entry returned by the
     * iterator) the results of the iteration are undefined.  The set
     * supports element removal, which removes the corresponding
     * mapping from the map, via the {@code Iterator.remove},
     * {@code Set.remove}, {@code removeAll}, {@code retainAll} and
     * {@code clear} operations.  It does not support the
     * {@code add} or {@code addAll} operations.
     *
     * @return a set view of the mappings contained in this map
     */
    public Set<Map.Entry<K,V>> entrySet() {
        Set<Map.Entry<K,V>> es;
        return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
    }

final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<Map.Entry<K,V>> iterator() {
            return new EntryIterator();
        }
        public final boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>) o;
            Object key = e.getKey();
            Node<K,V> candidate = getNode(hash(key), key);
            return candidate != null && candidate.equals(e);
        }
        public final boolean remove(Object o) {
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
                Object key = e.getKey();
                Object value = e.getValue();
                return removeNode(hash(key), key, value, true, true) != null;
            }
            return false;
        }
        public final Spliterator<Map.Entry<K,V>> spliterator() {
            return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (Node<K,V> e : tab) {
                    for (; e != null; e = e.next)
                        action.accept(e);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

// Overrides of JDK8 Map extension methods

/**
     * 如果键不存在,则返回默认值
     */
    @Override
    public V getOrDefault(Object key, V defaultValue) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
    }

/**
     * 只有当键不存在时,才新增键值对
     * created by ZXD at 15 Jul 2018 T 16:53:45
     */
    @Override
    public V putIfAbsent(K key, V value) {
        return putVal(hash(key), key, value, true, true);
    }

/**
     * 只有当键和值都匹配时,才移除节点
     * created by ZXD at 15 Jul 2018 T 16:54:04
     */
    @Override
    public boolean remove(Object key, Object value) {
        return removeNode(hash(key), key, value, true, true) != null;
    }

/**
     * 如果键和旧值都匹配,则更新新值,类似于 CAS 操作
     * created by ZXD at 15 Jul 2018 T 16:54:29
     */
    @Override
    public boolean replace(K key, V oldValue, V newValue) {
        Node<K,V> e; V v;
        if ((e = getNode(hash(key), key)) != null &&
            ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
            e.value = newValue;
            afterNodeAccess(e);
            return true;
        }
        return false;
    }

/**
     * 如果键已经存在,则使用新值替换旧值,并返回旧值
     * created by ZXD at 15 Jul 2018 T 16:55:12
     */
    @Override
    public V replace(K key, V value) {
        Node<K,V> e;
        if ((e = getNode(hash(key), key)) != null) {
            V oldValue = e.value;
            e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
        return null;
    }

/**
     * 1)如果旧的键和值都不为 null,则直接返回旧值。
     * 2)基于函数式接口和键计算新值,如果为 null,则直接返回 null
     * 3)如果旧节点存在,旧值为 null,则将其更新为计算值
     *
     *
     */
    @Override
    public V computeIfAbsent(K key,
                             Function<? super K, ? extends V> mappingFunction) {
        if (mappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K,V>[] tab; Node<K,V> first; int n, i;
        int binCount = 0;
        TreeNode<K,V> t = null;
        Node<K,V> old = null;
        if (size > threshold || (tab = table) == null ||
            (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode)
                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
            else {
                Node<K,V> e = first; K k;
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
            V oldValue;
            // 旧节点存在,并且其值不为 null,则直接返回旧值
            if (old != null && (oldValue = old.value) != null) {
                afterNodeAccess(old);
                return oldValue;
            }
        }
        int mc = modCount;
        if (mc != modCount) { throw new ConcurrentModificationException(); }
        // 基于函数式接口和键计算新值
        V v = mappingFunction.apply(key);
        // 新值为 null,则直接返回 null
        if (v == null) {
            return null;
        // 旧节点不为 null,但是其值为 null,则更新值
        } else if (old != null) {
            old.value = v;
            afterNodeAccess(old);
            return v;
        }
        // 旧节点不存在
        else if (t != null)
            // 如果 bucket 为红黑树,则新增树节点
            t.putTreeVal(this, tab, hash, key, v);
        else {
            // 否则在单向链表的头部新增节点
            tab[i] = newNode(hash, key, v, first);
            if (binCount >= TREEIFY_THRESHOLD - 1)
                // 单向链表的长度 > 8,则尝试执行树化操作
                treeifyBin(tab, hash);
        }
        modCount = mc + 1;
        ++size;
        afterNodeInsertion(true);
        return v;
    }

@Override
    public V computeIfPresent(K key,
                              BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        if (remappingFunction == null)
            throw new NullPointerException();
        Node<K,V> e; V oldValue;
        int hash = hash(key);
        // 指定的键存在,并且其值不为 null
        if ((e = getNode(hash, key)) != null &&
            (oldValue = e.value) != null) {
            int mc = modCount;
            /**
             * 将键和旧值传递给函数式接口计算出新值,如果值不为 null,则更新旧值;
             * 否则删除该键值对。
             */
            V v = remappingFunction.apply(key, oldValue);
            if (mc != modCount) { throw new ConcurrentModificationException(); }
            if (v != null) {
                e.value = v;
                afterNodeAccess(e);
                return v;
            }
            else
                removeNode(hash, key, null, false, true);
        }
        return null;
    }

@Override
    public V compute(K key,
                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        if (remappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K,V>[] tab; Node<K,V> first; int n, i;
        int binCount = 0;
        TreeNode<K,V> t = null;
        Node<K,V> old = null;
        if (size > threshold || (tab = table) == null ||
            (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode)
                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
            else {
                Node<K,V> e = first; K k;
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
        }
        V oldValue = (old == null) ? null : old.value;
        int mc = modCount;
        // 将旧键和旧值传递给函数式接口计算新值
        V v = remappingFunction.apply(key, oldValue);
        if (mc != modCount) { throw new ConcurrentModificationException(); }
        // 如果旧键存在
        if (old != null) {
            // 新的计算值不为 null,则更新旧值
            if (v != null) {
                old.value = v;
                afterNodeAccess(old);
            }
            // 新的计算值为 null,则删除该键值对
            else
                removeNode(hash, key, null, false, true);
        }
        // 旧键不存在,新的计算值不为 null
        else if (v != null) {
            if (t != null)
                // 插入新的树节点
                t.putTreeVal(this, tab, hash, key, v);
            else {
                // 在单向链表头部插入新节点
                tab[i] = newNode(hash, key, v, first);
                if (binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            modCount = mc + 1;
            ++size;
            afterNodeInsertion(true);
        }
        return v;
    }

@Override
    public V merge(K key, V value,
                   BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
        if (value == null)
            throw new NullPointerException();
        if (remappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K,V>[] tab; Node<K,V> first; int n, i;
        int binCount = 0;
        TreeNode<K,V> t = null;
        Node<K,V> old = null;
        if (size > threshold || (tab = table) == null ||
            (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode)
                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
            else {
                Node<K,V> e = first; K k;
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
        }
        // 旧节点存在
        if (old != null) {
            V v;
            // 旧值不为 null
            if (old.value != null) {
                int mc = modCount;
                // 将旧值和目标值传递给函数式接口,计算新值
                v = remappingFunction.apply(old.value, value);
                if (mc != modCount) {
                    throw new ConcurrentModificationException();
                }
            } else {
                // 新值即为目标值
                v = value;
            }
            // 新值不为 null,则更新旧值
            if (v != null) {
                old.value = v;
                afterNodeAccess(old);
            }
            // 新值为 null,则删除节点
            else
                removeNode(hash, key, null, false, true);
            return v;
        }
        // 节点不存在,目标值不为 null
        if (value != null) {
            if (t != null)
                // 插入树节点
                t.putTreeVal(this, tab, hash, key, value);
            else {
                // 插入到单向链表头部
                tab[i] = newNode(hash, key, value, first);
                if (binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            ++modCount;
            ++size;
            afterNodeInsertion(true);
        }
        return value;
    }

/**
     * 将 key 和 value 传递给函数式接口进行消费
     */
    @Override
    public void forEach(BiConsumer<? super K, ? super V> action) {
        Node<K,V>[] tab;
        if (action == null)
            throw new NullPointerException();
        if (size > 0 && (tab = table) != null) {
            int mc = modCount;
            for (Node<K,V> e : tab) {
                for (; e != null; e = e.next)
                    action.accept(e.key, e.value);
            }
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

/**
     * 将旧的 key 和 value 传递给函数式接口计算新值,并替换旧值
     * created by ZXD at 15 Jul 2018 T 17:16:20
     */
    @Override
    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
        Node<K,V>[] tab;
        if (function == null)
            throw new NullPointerException();
        if (size > 0 && (tab = table) != null) {
            int mc = modCount;
            for (Node<K,V> e : tab) {
                for (; e != null; e = e.next) {
                    e.value = function.apply(e.key, e.value);
                }
            }
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

/* ------------------------------------------------------------ */
    // Cloning and serialization
    /**
     * Returns a shallow copy of this {@code HashMap} instance: the keys and
     * values themselves are not cloned.
     */
    @SuppressWarnings("unchecked")
    @Override
    public Object clone() {
        HashMap<K,V> result;
        try {
            result = (HashMap<K,V>)super.clone();
        } catch (CloneNotSupportedException e) {
            // this shouldn‘t happen, since we are Cloneable
            throw new InternalError(e);
        }
        result.reinitialize();
        result.putMapEntries(this, false);
        return result;
    }

// These methods are also used when serializing HashSets
    final float loadFactor() { return loadFactor; }
    final int capacity() {
        return (table != null) ? table.length :
            (threshold > 0) ? threshold :
            DEFAULT_INITIAL_CAPACITY;
    }

/* ------------------------------------------------------------ */
    // iterators
    abstract class HashIterator {
        Node<K,V> next;        // next entry to return
        Node<K,V> current;     // current entry
        int expectedModCount;  // for fast-fail
        int index;             // current slot

HashIterator() {
            expectedModCount = modCount;
            Node<K,V>[] t = table;
            current = next = null;
            index = 0;
            if (t != null && size > 0) { // advance to first entry
                do {} while (index < t.length && (next = t[index++]) == null);
            }
        }

public final boolean hasNext() {
            return next != null;
        }

final Node<K,V> nextNode() {
            Node<K,V>[] t;
            Node<K,V> e = next;
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (e == null)
                throw new NoSuchElementException();
            if ((next = (current = e).next) == null && (t = table) != null) {
                do {} while (index < t.length && (next = t[index++]) == null);
            }
            return e;
        }

public final void remove() {
            Node<K,V> p = current;
            if (p == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            current = null;
            removeNode(p.hash, p.key, null, false, false);
            expectedModCount = modCount;
        }
    }

final class KeyIterator extends HashIterator
        implements Iterator<K> {
        public final K next() { return nextNode().key; }
    }

final class ValueIterator extends HashIterator
        implements Iterator<V> {
        public final V next() { return nextNode().value; }
    }

final class EntryIterator extends HashIterator
        implements Iterator<Map.Entry<K,V>> {
        public final Map.Entry<K,V> next() { return nextNode(); }
    }

/* ------------------------------------------------------------ */
    // spliterators

static class HashMapSpliterator<K,V> {
        final HashMap<K,V> map;
        Node<K,V> current;          // current node
        int index;                  // current index, modified on advance/split
        int fence;                  // one past last index
        int est;                    // size estimate
        int expectedModCount;       // for comodification checks

HashMapSpliterator(HashMap<K,V> m, int origin,
                           int fence, int est,
                           int expectedModCount) {
            this.map = m;
            this.index = origin;
            this.fence = fence;
            this.est = est;
            this.expectedModCount = expectedModCount;
        }

final int getFence() { // initialize fence and size on first use
            int hi;
            if ((hi = fence) < 0) {
                HashMap<K,V> m = map;
                est = m.size;
                expectedModCount = m.modCount;
                Node<K,V>[] tab = m.table;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            return hi;
        }

public final long estimateSize() {
            getFence(); // force init
            return (long) est;
        }
    }

static final class KeySpliterator<K,V>
        extends HashMapSpliterator<K,V>
        implements Spliterator<K> {
        KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
                       int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

public KeySpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
                                        expectedModCount);
        }

public void forEachRemaining(Consumer<? super K> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap<K,V> m = map;
            Node<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node<K,V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p.key);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

public boolean tryAdvance(Consumer<? super K> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node<K,V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        K k = current.key;
                        current = current.next;
                        action.accept(k);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                Spliterator.DISTINCT;
        }
    }

static final class ValueSpliterator<K,V>
        extends HashMapSpliterator<K,V>
        implements Spliterator<V> {
        ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

public ValueSpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
                                          expectedModCount);
        }

public void forEachRemaining(Consumer<? super V> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap<K,V> m = map;
            Node<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node<K,V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p.value);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

public boolean tryAdvance(Consumer<? super V> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node<K,V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        V v = current.value;
                        current = current.next;
                        action.accept(v);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
        }
    }

static final class EntrySpliterator<K,V>
        extends HashMapSpliterator<K,V>
        implements Spliterator<Map.Entry<K,V>> {
        EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

public EntrySpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
                                          expectedModCount);
        }

public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap<K,V> m = map;
            Node<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node<K,V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node<K,V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        Node<K,V> e = current;
                        current = current.next;
                        action.accept(e);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                Spliterator.DISTINCT;
        }
    }

/* ------------------------------------------------------------ */
    // LinkedHashMap support
    /*
     * The following package-protected methods are designed to be
     * overridden by LinkedHashMap, but not by any other subclass.
     * Nearly all other internal methods are also package-protected
     * but are declared final, so can be used by LinkedHashMap, view
     * classes, and HashSet.
     */
    // 创建一个新的单向链表节点
    Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
        return new Node<>(hash, key, value, next);
    }

// For conversion from TreeNodes to plain nodes
    Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
        return new Node<>(p.hash, p.key, p.value, next);
    }

// Create a tree bin node
    // 创建一个新的树节点
    TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
        return new TreeNode<>(hash, key, value, next);
    }

// For treeifyBin
    // 将单向链表节点替换为树节点
    TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
        return new TreeNode<>(p.hash, p.key, p.value, next);
    }

/**
     * Reset to initial default state.  Called by clone and readObject.
     */
    void reinitialize() {
        table = null;
        entrySet = null;
        keySet = null;
        values = null;
        modCount = 0;
        threshold = 0;
        size = 0;
    }

// Callbacks to allow LinkedHashMap post-actions
    void afterNodeAccess(Node<K,V> p) { }
    void afterNodeInsertion(boolean evict) { }
    void afterNodeRemoval(Node<K,V> p) { }

// Called only from writeObject, to ensure compatible ordering.
    void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
        Node<K,V>[] tab;
        if (size > 0 && (tab = table) != null) {
            for (Node<K,V> e : tab) {
                for (; e != null; e = e.next) {
                    s.writeObject(e.key);
                    s.writeObject(e.value);
                }
            }
        }
    }

/* ------------------------------------------------------------ */
    // Tree bins
    /**
     * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
     * extends Node) so can be used as extension of either regular or
     * linked node.
     */
    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // 父节点
        TreeNode<K,V> left;     // 左孩子节点
        TreeNode<K,V> right; // 右孩子节点
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;    // 红色还是黑色
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }

/**
         * Returns root of tree containing this node.
         */
        final TreeNode<K,V> root() {
            // 获取当前节点的树根节点
            for (TreeNode<K,V> r = this, p;;) {
                if ((p = r.parent) == null)
                    return r;
                r = p;
            }
        }

/**
         * Ensures that the given root is the first node of its bin.
         */
        static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
            int n;
            if (root != null && tab != null && (n = tab.length) > 0) {
                int index = (n - 1) & root.hash;
                TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
                if (root != first) {
                    Node<K,V> rn;
                    tab[index] = root;
                    TreeNode<K,V> rp = root.prev;
                    if ((rn = root.next) != null)
                        ((TreeNode<K,V>)rn).prev = rp;
                    if (rp != null)
                        rp.next = rn;
                    if (first != null)
                        first.prev = root;
                    root.next = first;
                    root.prev = null;
                }
                assert checkInvariants(root);
            }
        }

/**
         * Finds the node starting at root p with the given hash and key.
         * The kc argument caches comparableClassFor(key) upon first use
         * comparing keys.
         */
        final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
            TreeNode<K,V> p = this;
            do {
                int ph, dir; K pk;
                // pl 当前节点的左侧子节点,pr 当前节点的右侧子节点
                TreeNode<K,V> pl = p.left, pr = p.right, q;
                // 当前节点的 hash 值大于目标哈希值
                if ((ph = p.hash) > h)
                    // 往左侧查找
                    p = pl;
                else if (ph < h)
                    // 往右侧查找
                    p = pr;
                // 哈希值相等,并且节点的键和目标键引用相等或 equals 相等,则表示找到目标树节点,字节返回。
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                // 左孩子为 null,则更新 parent 为右孩子
                else if (pl == null)
                    p = pr;
                // 右孩子为 null,则更新 parent 为左孩子
                else if (pr == null)
                    p = pl;
                else if ((kc != null ||
                          (kc = comparableClassFor(k)) != null) &&
                         (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                else if ((q = pr.find(h, k, kc)) != null)
                    return q;
                else
                    p = pl;
            // 一直查找到没有左右孩子为止    
            } while (p != null);
            return null;
        }

/**
         * Calls find for root node.
         */
        final TreeNode<K,V> getTreeNode(int h, Object k) {
            return ((parent != null) ? root() : this).find(h, k, null);
        }

/**
         * Tie-breaking utility for ordering insertions when equal
         * hashCodes and non-comparable. We don‘t require a total
         * order, just a consistent insertion rule to maintain
         * equivalence across rebalancings. Tie-breaking further than
         * necessary simplifies testing a bit.
         */
        static int tieBreakOrder(Object a, Object b) {
            int d;
            // 先根据类的全限定名称进行比较,如果一致,则根据 System.identityHashCode 值进行比较
            if (a == null || b == null ||
                (d = a.getClass().getName().
                 compareTo(b.getClass().getName())) == 0)
                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                     -1 : 1);
            return d;
        }

/**
         * Forms tree of the nodes linked from this node.
         * 将单向链表红黑树化
         */
        final void treeify(Node<K,V>[] tab) {
            TreeNode<K,V> root = null; // 定义树的根节点
            for (TreeNode<K,V> x = this, next; x != null; x = next) {
                // 获取下一个节点
                next = (TreeNode<K,V>)x.next;
                // 将树节点的左右孩子置为 null
                x.left = x.right = null;
                if (root == null) { // 如果还未设置根节点
                    x.parent = null; // 将当前节点的父节点设置为 null
                    x.red = false; // 颜色为黑色
                    root = x; // 根节点指向当前节点
                }
                else { // 如果已经存在根节点了
                    K k = x.key; // 获取单向链表节点的键
                    int h = x.hash; // 获取节点的哈希值
                    Class<?> kc = null;
                    for (TreeNode<K,V> p = root;;) { // 从根节点开始遍历
                        int dir, ph;
                        K pk = p.key; // 根节点的键
                        if ((ph = p.hash) > h) // 根节点的哈希值 > 当前节点的哈希值
                            dir = -1; // 标识当前节点会放置在根节点的左侧
                        else if (ph < h) // 根节点的哈希值 < 当前节点的哈希值
                            dir = 1; // 标识当前节点会放置在根节点的右侧
                        /**
                         * 如果当前节点和根节点的哈希值一致,
                         * 如果当前链表节点的 key实现了 comparable接口,并且当前根节点和链表节点是相同 Class的实例,那么通过 compareTo 的方式再比较两者
                         */
                        else if ((kc == null &&
                                  (kc = comparableClassFor(k)) == null) ||
                                 (dir = compareComparables(kc, k, pk)) == 0)
                            // 如果还是一致,则通过 tieBreakOrder 进行比较
                            dir = tieBreakOrder(k, pk);

TreeNode<K,V> xp = p; // 保存当前树节点
                        /**
                         * 如果 dir <= 0:当前链表节点需要放置在当前树节点的左侧,但不一定是该树节点的左孩子。
                         * 如果 dir > 0 :当前链表节点需要放置在当前树节点的右侧,但不一定是该树节点的右孩子。
                         * 如果当前树节点的左侧或右侧孩子为 null,则直接插入当前节点,
                         * 否则获取到当前节点的左侧子节点【dir <= 0】或右侧子节点【dir > 0】,继续循环。
                         */
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp; // 设置单向链表节点的父节点为当前树节点
                            if (dir <= 0)
                                xp.left = x; // 如果 dir <= 0,则将链表节点设置为当前树节点的左侧子节点
                            else
                                xp.right = x; // 否则将链表节点设置为当前树节点的右侧子节点
                            // 重新平衡红黑树,并获取新的根节点
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
            // 将根节点设置为 table 中 bucket 的首节点
            moveRootToFront(tab, root);
        }

/**
         * Returns a list of non-TreeNodes replacing those linked from
         * this node.
         */
        final Node<K,V> untreeify(HashMap<K,V> map) {
            // 定义 head 和 tail 节点
            Node<K,V> hd = null, tl = null;
            for (Node<K,V> q = this; q != null; q = q.next) {
                // 将树节点转换为单链表节点
                Node<K,V> p = map.replacementNode(q, null);
                // 如果还没有尾节点,则将当前节点设置为当前节点【当前节点是第一个节点】
                if (tl == null)
                    hd = p;
                else
                    // 已经有尾节点了,则将尾节点的后置节点设置为当前节点
                    tl.next = p;
                // 将当前节点设置为尾节点
                tl = p;
            }
            // 返回头节点
            return hd;
        }

/**
         * Tree version of putVal.
         */
        final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                                       int h, K k, V v) {
            Class<?> kc = null;
            boolean searched = false;
            // 获取树根节点
            TreeNode<K,V> root = (parent != null) ? root() : this;
            for (TreeNode<K,V> p = root;;) {
                int dir, ph; K pk;
                // 当前节点的哈希值 > 新增节点的哈希值
                if ((ph = p.hash) > h)
                    dir = -1; // 标记新增节点需要放置在当前树节点左侧
                else if (ph < h) // 当前节点的哈希值 < 新增节点的哈希值
                    dir = 1; // 标记新增节点需要放置在当前树节点右侧
                // 如果当前树节点和新增节点哈希值一致,并且键引用相等或 equals 相等,表示当前键已经存在,则直接返回当前树节点
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                // 如果当前树节点和新增节点哈希值一致,
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0) {
                    /**
                     * searched 标识是否已经对比过当前节点的左右子树。
                     * 如果还没有遍历过,那么就递归遍历对比,如果找到和新增节点键相等的节点,则直接返回。
                     * 如果还是没有找到和新增节点键相等的节点,那说明应该创建一个新节点了。
                     */
                    if (!searched) {
                        TreeNode<K,V> q, ch;
                        searched = true;
                        /**
                         * 如果左子节点不为 null,则递归查找左子树,如果右子节点不为 null,则递归查找右子树,
                         * 如果找到则立刻返回该节点。
                         */
                        if (((ch = p.left) != null &&
                             (q = ch.find(h, k, kc)) != null) ||
                            ((ch = p.right) != null &&
                             (q = ch.find(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }

TreeNode<K,V> xp = p; // 记录当前树节点
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    Node<K,V> xpn = xp.next; // 获取单向链表结构中当前树节点的后置节点
                    // 构造树节点
                    TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                    if (dir <= 0)
                        xp.left = x; // 将新节点设置为当前树节点的左孩子
                    else
                        xp.right = x; // 将新节点设置为当前树节点的右孩子
                    xp.next = x; // 单向链表结构中当前树节点的后置节点更新为新增节点
                    x.parent = x.prev = xp; // 新增节点的前置节点和父节点都设置为当前树节点
                    if (xpn != null) // 更新当前树节点的旧后置节点的前置节点为新增树节点
                        ((TreeNode<K,V>)xpn).prev = x;
                    // 平衡插入,并计算新的根节点,将其作为 table 中 bucket 的首节点
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
                }
            }
        }

/**
         * Removes the given node, that must be present before this call.
         * This is messier than typical red-black deletion code because we
         * cannot swap the contents of an interior node with a leaf
         * successor that is pinned by "next" pointers that are accessible
         * independently during traversal. So instead we swap the tree
         * linkages. If the current tree appears to have too few nodes,
         * the bin is converted back to a plain bin. (The test triggers
         * somewhere between 2 and 6 nodes, depending on tree structure).
         */
        final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
                                  boolean movable) {
            int n;
            if (tab == null || (n = tab.length) == 0)
                return;
            int index = (n - 1) & hash;
            TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
            TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
            if (pred == null)
                tab[index] = first = succ;
            else
                pred.next = succ;
            if (succ != null)
                succ.prev = pred;
            if (first == null)
                return;
            if (root.parent != null)
                root = root.root();
            if (root == null
                || (movable
                    && (root.right == null
                        || (rl = root.left) == null
                        || rl.left == null))) {
                tab[index] = first.untreeify(map);  // too small
                return;
            }
            TreeNode<K,V> p = this, pl = left, pr = right, replacement;
            if (pl != null && pr != null) {
                TreeNode<K,V> s = pr, sl;
                while ((sl = s.left) != null) // find successor
                    s = sl;
                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
                TreeNode<K,V> sr = s.right;
                TreeNode<K,V> pp = p.parent;
                if (s == pr) { // p was s‘s direct parent
                    p.parent = s;
                    s.right = p;
                }
                else {
                    TreeNode<K,V> sp = s.parent;
                    if ((p.parent = sp) != null) {
                        if (s == sp.left)
                            sp.left = p;
                        else
                            sp.right = p;
                    }
                    if ((s.right = pr) != null)
                        pr.parent = s;
                }
                p.left = null;
                if ((p.right = sr) != null)
                    sr.parent = p;
                if ((s.left = pl) != null)
                    pl.parent = s;
                if ((s.parent = pp) == null)
                    root = s;
                else if (p == pp.left)
                    pp.left = s;
                else
                    pp.right = s;
                if (sr != null)
                    replacement = sr;
                else
                    replacement = p;
            }
            else if (pl != null)
                replacement = pl;
            else if (pr != null)
                replacement = pr;
            else
                replacement = p;
            if (replacement != p) {
                TreeNode<K,V> pp = replacement.parent = p.parent;
                if (pp == null)
                    root = replacement;
                else if (p == pp.left)
                    pp.left = replacement;
                else
                    pp.right = replacement;
                p.left = p.right = p.parent = null;
            }

TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);

if (replacement == p) {  // detach
                TreeNode<K,V> pp = p.parent;
                p.parent = null;
                if (pp != null) {
                    if (p == pp.left)
                        pp.left = null;
                    else if (p == pp.right)
                        pp.right = null;
                }
            }
            if (movable)
                moveRootToFront(tab, r);
        }

/**
         * Splits nodes in a tree bin into lower and upper tree bins,
         * or untreeifies if now too small. Called only from resize;
         * see above discussion about split bits and indices.
         *
         * @param map the map
         * @param tab the table for recording bin heads
         * @param index the index of the table being split
         * @param bit the bit of hash to split on
         */
        final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
            TreeNode<K,V> b = this;
            // Relink into lo and hi lists, preserving order
            TreeNode<K,V> loHead = null, loTail = null;
            TreeNode<K,V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for (TreeNode<K,V> e = b, next; e != null; e = next) {
                next = (TreeNode<K,V>)e.next;
                e.next = null;
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc;
                }
                else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;
                }
            }

if (loHead != null) {
                if (lc <= UNTREEIFY_THRESHOLD)
                    tab[index] = loHead.untreeify(map);
                else {
                    tab[index] = loHead;
                    if (hiHead != null) // (else is already treeified)
                        loHead.treeify(tab);
                }
            }
            if (hiHead != null) {
                if (hc <= UNTREEIFY_THRESHOLD)
                    tab[index + bit] = hiHead.untreeify(map);
                else {
                    tab[index + bit] = hiHead;
                    if (loHead != null)
                        hiHead.treeify(tab);
                }
            }
        }

/* ------------------------------------------------------------ */
        // Red-black tree methods, all adapted from CLR
        /**
         * 以 p 节点为中心实现左旋
         * https://github.com/CarpenterLee/JCFInternals/blob/master/markdown/5-TreeSet%20and%20TreeMap.md
         */
        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
                                              TreeNode<K,V> p) {
            TreeNode<K,V> r, pp, rl;
            if (p != null && (r = p.right) != null) {
                if ((rl = p.right = r.left) != null)
                    rl.parent = p;
                if ((pp = r.parent = p.parent) == null)
                    (root = r).red = false;
                else if (pp.left == p)
                    pp.left = r;
                else
                    pp.right = r;
                r.left = p;
                p.parent = r;
            }
            return root;
        }

/**
         * 以 p 节点为中心实现右旋
         * created by ZXD at 16 Jul 2018 T 21:47:00
         */
        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
                                               TreeNode<K,V> p) {
            TreeNode<K,V> l, pp, lr;
            if (p != null && (l = p.left) != null) {
                if ((lr = p.left = l.right) != null)
                    lr.parent = p;
                if ((pp = l.parent = p.parent) == null)
                    (root = l).red = false;
                else if (pp.right == p)
                    pp.right = l;
                else
                    pp.left = l;
                l.right = p;
                p.parent = l;
            }
            return root;
        }

static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
                                                    TreeNode<K,V> x) {
            x.red = true;
            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
                if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                else if (!xp.red || (xpp = xp.parent) == null)
                    return root;
                if (xp == (xppl = xpp.left)) {
                    if ((xppr = xpp.right) != null && xppr.red) {
                        xppr.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.right) {
                            root = rotateLeft(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateRight(root, xpp);
                            }
                        }
                    }
                }
                else {
                    if (xppl != null && xppl.red) {
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.left) {
                            root = rotateRight(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateLeft(root, xpp);
                            }
                        }
                    }
                }
            }
        }

static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
                                                   TreeNode<K,V> x) {
            for (TreeNode<K,V> xp, xpl, xpr;;) {
                if (x == null || x == root)
                    return root;
                else if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                else if (x.red) {
                    x.red = false;
                    return root;
                }
                else if ((xpl = xp.left) == x) {
                    if ((xpr = xp.right) != null && xpr.red) {
                        xpr.red = false;
                        xp.red = true;
                        root = rotateLeft(root, xp);
                        xpr = (xp = x.parent) == null ? null : xp.right;
                    }
                    if (xpr == null)
                        x = xp;
                    else {
                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
                        if ((sr == null || !sr.red) &&
                            (sl == null || !sl.red)) {
                            xpr.red = true;
                            x = xp;
                        }
                        else {
                            if (sr == null || !sr.red) {
                                if (sl != null)
                                    sl.red = false;
                                xpr.red = true;
                                root = rotateRight(root, xpr);
                                xpr = (xp = x.parent) == null ?
                                    null : xp.right;
                            }
                            if (xpr != null) {
                                xpr.red = (xp == null) ? false : xp.red;
                                if ((sr = xpr.right) != null)
                                    sr.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateLeft(root, xp);
                            }
                            x = root;
                        }
                    }
                }
                else { // symmetric
                    if (xpl != null && xpl.red) {
                        xpl.red = false;
                        xp.red = true;
                        root = rotateRight(root, xp);
                        xpl = (xp = x.parent) == null ? null : xp.left;
                    }
                    if (xpl == null)
                        x = xp;
                    else {
                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
                        if ((sl == null || !sl.red) &&
                            (sr == null || !sr.red)) {
                            xpl.red = true;
                            x = xp;
                        }
                        else {
                            if (sl == null || !sl.red) {
                                if (sr != null)
                                    sr.red = false;
                                xpl.red = true;
                                root = rotateLeft(root, xpl);
                                xpl = (xp = x.parent) == null ?
                                    null : xp.left;
                            }
                            if (xpl != null) {
                                xpl.red = (xp == null) ? false : xp.red;
                                if ((sl = xpl.left) != null)
                                    sl.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateRight(root, xp);
                            }
                            x = root;
                        }
                    }
                }
            }
        }

/**
         * Recursive invariant check
         */
        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
                tb = t.prev, tn = (TreeNode<K,V>)t.next;
            if (tb != null && tb.next != t)
                return false;
            if (tn != null && tn.prev != t)
                return false;
            if (tp != null && t != tp.left && t != tp.right)
                return false;
            if (tl != null && (tl.parent != t || tl.hash > t.hash))
                return false;
            if (tr != null && (tr.parent != t || tr.hash < t.hash))
                return false;
            if (t.red && tl != null && tl.red && tr != null && tr.red)
                return false;
            if (tl != null && !checkInvariants(tl))
                return false;
            if (tr != null && !checkInvariants(tr))
                return false;
            return true;
        }
    }

}

原文地址:https://www.cnblogs.com/zhuxudong/p/9320643.html

时间: 2024-11-04 21:30:24

HashMap 源码分析的相关文章

[Java] HashMap源码分析

1.概述 Hashmap继承于AbstractMap,实现了Map.Cloneable.java.io.Serializable接口.它的key.value都可以为null,映射不是有序的. Hashmap不是同步的,如果想要线程安全的HashMap,可以通过Collections类的静态方法synchronizedMap获得线程安全的HashMap. Map map = Collections.synchronizedMap(new HashMap()); (除了不同步和允许使用 null 之

【JAVA集合】HashMap源码分析(转载)

原文出处:http://www.cnblogs.com/chenpi/p/5280304.html 以下内容基于jdk1.7.0_79源码: 什么是HashMap 基于哈希表的一个Map接口实现,存储的对象是一个键值对对象(Entry<K,V>): HashMap补充说明 基于数组和链表实现,内部维护着一个数组table,该数组保存着每个链表的表头结点:查找时,先通过hash函数计算hash值,再根据hash值计算数组索引,然后根据索引找到链表表头结点,然后遍历查找该链表: HashMap数据

HashMap源码分析(转载)

一.HashMap概述 HashMap基于哈希表的 Map 接口的实现.此实现提供所有可选的映射操作,并允许使用 null 值和 null 键.(除了不同步和允许使用 null 之外,HashMap 类与 Hashtable 大致相同.)此类不保证映射的顺序,特别是它不保证该顺序恒久不变. 值得注意的是HashMap不是线程安全的,如果想要线程安全的HashMap,可以通过Collections类的静态方法synchronizedMap获得线程安全的HashMap. Map map = Coll

Java集合系列之HashMap源码分析

一.HashMap简介 HashMap是基于哈希表的Map接口实现的,它存储的是内容是键值对<key,value>映射.此类不保证映射的顺序,假定哈希函数将元素适当的分布在各桶之间,可为基本操作(get和put)提供稳定的性能. ps:本文中的源码来自jdk1.8.0_45/src. 1.重要参数 HashMap的实例有两个参数影响其性能. 初始容量:哈希表中桶的数量 加载因子:哈希表在其容量自动增加之前可以达到多满的一种尺度 当哈希表中条目数超出了当前容量*加载因子(其实就是HashMap的

Java集合之HashMap源码分析

一.HashMap简介 HashMap是基于哈希表的Map接口实现的,它存储的是内容是键值对<key,value>映射.此类不保证映射的顺序,假定哈希函数将元素适当的分布在各桶之间,可为基本操作(get和put)提供稳定的性能. ps:本文中的源码来自jdk1.8.0_45/src. 1.重要参数 HashMap的实例有两个参数影响其性能. 初始容量:哈希表中桶的数量 加载因子:哈希表在其容量自动增加之前可以达到多满的一种尺度 当哈希表中条目数超出了当前容量*加载因子(其实就是HashMap的

Java中HashMap源码分析

一.HashMap概述 HashMap基于哈希表的Map接口的实现.此实现提供所有可选的映射操作,并允许使用null值和null键.(除了不同步和允许使用null之外,HashMap类与Hashtable大致相同)此类不保证映射的顺序,特别是它不保证该顺序恒久不变. 值得注意的是HashMap不是线程安全的,如果想要线程安全的HashMap,可以通过Collections类的静态方法synchronizedMap获得线程安全的HashMap. Map map = Collections.sync

Java进阶之----HashMap源码分析

今天我们接着来看HashMap的源码,对几个常用的方法进行分析.在分析之前,我们还是要先对HashMap的结构有一个了解.看过之前我分析的ArrayList和LinkedList源码的朋友应该清楚,ArrayList内部是以数组实现的,LinkedList内部是以链表实现的.而HashMap则是对数组和链表的结合,虽然看上去复杂了一些,不过仔细分析一下,还是很好理解的.我们来看一张图片,是我根据我的理解画的. 我们在来看看Entry的内部结构是什么: 以上两个图,相信大家对HashMap的结构有

Java BAT大型公司面试必考技能视频-1.HashMap源码分析与实现

视频通过以下四个方面介绍了HASHMAP的内容 一. 什么是HashMap Hash散列将一个任意的长度通过某种算法(Hash函数算法)转换成一个固定的值. MAP:地图 x,y 存储 总结:通过HASH出来的值,然后通过值定位到这个MAP,然后value存储到这个MAP中的HASHMAP基本原理 1. KEY 是否可以为空?可以,Null当成一个Key来存储 2. 如果Hash KEY重复了会覆盖吗?会覆盖,但返回旧的值 3. HASHMAP什么时候做扩容?put 的时候,阀值高于或等于0.7

HashMap源码分析--jdk1.8

JDK1.8 ArrayList源码分析--jdk1.8LinkedList源码分析--jdk1.8HashMap源码分析--jdk1.8 HashMap概述 ??1. HashMap是可以动态扩容的数组,基于数组.链表.红黑树实现的集合.??2. HashMap支持键值对取值.克隆.序列化,元素无序,key不可重复value可重复,都可为null.??3. HashMap初始默认长度16,超出扩容2倍,填充因子0.75f.??4.HashMap当链表的长度大于8的且数组大小大于64时,链表结构

HashMap源码分析(基于JDK1.6)

在Java集合类中最常用的除了ArrayList外,就是HashMap了.本文尽自己所能,尽量详细的解释HashMap的源码.一山还有一山高,有不足之处请之处,定感谢指定并及时修正. 在看HashMap源码之前先复习一下数据结构. Java最基本的数据结构有数组和链表.数组的特点是空间连续(大小固定).寻址迅速,但是插入和删除时需要移动元素,所以查询快,增加删除慢.链表恰好相反,可动态增加或减少空间以适应新增和删除元素,但查找时只能顺着一个个节点查找,所以增加删除快,查找慢.有没有一种结构综合了