【并发编程】Future模式及JDK中的实现

1.1、Future模式是什么

先简单举个例子介绍,当我们平时写一个函数,函数里的语句一行行同步执行,如果某一行执行很慢,程序就必须等待,直到执行结束才返回结果;但有时我们可能并不急着需要其中某行的执行结果,想让被调用者立即返回。比如小明在某网站上成功创建了一个账号,创建完账号后会有邮件通知,如果在邮件通知时因某种原因耗时很久(此时账号已成功创建),使用传统同步执行的方式那就要等完这个时间才会有创建成功的结果返回到前端,但此时账号创建成功后我们并不需要立即关心邮件发送成功了没,此时就可以使用Future模式,让安在后台慢慢处理这个请求,对于调用者来说,则可以先处理一些其他任务,在真正需要数据的场合(比如某时想要知道邮件发送是否成功)再去尝试获取需要的数据。

使用Future模式,获取数据的时候可能无法立即得到需要的数据。而是先拿到一个包装,可以在需要的时候再去get获取需要的数据。

1.2、Future模式与传统模式的区别

先看看请求返回的时序图,明显传统的模式是串行同步执行的,在遇到耗时操作的时候只能等待。反观Future模式,发起一个耗时操作后,函数会立刻返回,并不会阻塞客户端线程。所以在执行实际耗时操作时候客户端无需等待,可以做其他事情,直到需要的时候再向工作线程获取结果。

2.1、动手实现简易Future模式

下面的DataFuture类只是一个包装类,创建它时无需阻塞等待。在工作线程准备好数据后使用setRealData方法将数据传入。客户端只要在真正需要数据时调用getRealData方法即可,如果此时数据已准备好则立即返回,否则getRealData方法就会等待,直到获取数据完成。

public class DataFuture<T> {
    private T realData;
    private boolean isOK = false;

    public synchronized T getRealData() {
        while (!isOK) {
            try {
                // 数据未准备好则等待
                wait();
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
        return realData;
    }

    public synchronized void setRealData(T data) {
        isOK = true;
        realData = data;
        notifyAll();
    }
}

下面实现一服务端,客户端向服务端请求数据时,服务端并不会立刻去加载真正数据,只是创建一个DataFuture,创建子线程去加载真正数据,服务端直接返回DataFuture即可。

public class Server {

    public DataFuture<String> getData() {
        final DataFuture<String> data = new DataFuture<>();
        Executors.newSingleThreadExecutor().execute(new Runnable() {
            @Override
            public void run() {
                try {
                    Thread.sleep(5000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                data.setRealData("最终数据");
            }
        });
        return data;
    }
}

最终客户端调用 代码如下:

long start = System.currentTimeMillis();
Server server = new Server();
DataFuture<String> dataFuture = server.getData();

try {
    // 先执行其他操作
    Thread.sleep(5000);
    // 模拟耗时...
} catch (InterruptedException e) {
    e.printStackTrace();
}

System.out.print("结果数据:" + dataFuture.getRealData());
System.out.println("耗时: " + (System.currentTimeMillis() - start));

结果:

结果数据:最终数据
耗时: 5021

执行最终数据耗时都在5秒左右,如果串行执行的话就是10秒左右。

2.2、JDK中的Future与FutureTask

先来看看Future接口源码:

public interface Future<V> {
    /**
     * 用来取消任务,取消成功则返回true,取消失败则返回false。
     * mayInterruptIfRunning参数表示是否允许取消正在执行却没有执行完毕的任务,设为true,则表示可以取消正在执行过程中的任务。
     * 如果任务已完成,则无论mayInterruptIfRunning为true还是false,此方法都返回false,即如果取消已经完成的任务会返回false;
     * 如果任务正在执行,若mayInterruptIfRunning设置为true,则返回true,若mayInterruptIfRunning设置为false,则返回false;
     * 如果任务还没有执行,则无论mayInterruptIfRunning为true还是false,肯定返回true。
     */
    boolean cancel(boolean mayInterruptIfRunning);

    /**
     * 表示任务是否被取消成功,如果在任务正常完成前被取消成功,则返回true
     */
    boolean isCancelled();

    /**
     * 表示任务是否已经完成,若任务完成,则返回true
     */
    boolean isDone();

    /**
     * 获取执行结果,如果最终结果还没得出该方法会产生阻塞,直到任务执行完毕返回结果
     */
    V get() throws InterruptedException, ExecutionException;

    /**
     * 获取执行结果,如果在指定时间内,还没获取到结果,则抛出TimeoutException
     */
    V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException;
}

从上面源码可看出Future就是对于Runnable或Callable任务的执行进行查询、中断任务、获取结果。下面就以一个计算1到1亿的和为例子,看使用传统方式和使用Future耗时差多少。先看传统方式代码:

public class FutureTest {

    public static void main(String[] args) {
        long start = System.currentTimeMillis();
        List<Integer> retList = new ArrayList<>();

        // 计算1000次1至1亿的和
        for (int i = 0; i < 1000; i++) {
            retList.add(Calc.cal(100000000));
        }
        System.out.println("耗时: " + (System.currentTimeMillis() - start));

        for (int i = 0; i < 1000; i++) {
            try {
                Integer result = retList.get(i);
                System.out.println("第" + i + "个结果: " + result);
            } catch (Exception e) {
            }
        }
        System.out.println("耗时: " + (System.currentTimeMillis() - start));
    }

    public static class Calc implements Callable<Integer> {

        @Override
        public Integer call() throws Exception {
            return cal(10000);
        }

        public static int cal (int num) {
            int sum = 0;
            for (int i = 0; i < num; i++) {
                sum += i;
            }
            return sum;
        }
    }
}

执行结果(耗时40+秒):

耗时: 43659
第0个结果: 887459712
第1个结果: 887459712
第2个结果: 887459712
...
第999个结果: 887459712
耗时: 43688

再来看看使用Future模式下程序:

public class FutureTest {

    public static void main(String[] args) {
        long start = System.currentTimeMillis();
        ExecutorService executorService = Executors.newCachedThreadPool();
        List<Future<Integer>> futureList = new ArrayList<>();

        // 计算1000次1至1亿的和
        for (int i = 0; i < 1000; i++) {
            // 调度执行
            futureList.add(executorService.submit(new Calc()));
        }
        System.out.println("耗时: " + (System.currentTimeMillis() - start));

        for (int i = 0; i < 1000; i++) {
            try {
                Integer result = futureList.get(i).get();
                System.out.println("第" + i + "个结果: " + result);
            } catch (InterruptedException | ExecutionException e) {
            }
        }
        System.out.println("耗时: " + (System.currentTimeMillis() - start));
    }

    public static class Calc implements Callable<Integer> {

        @Override
        public Integer call() throws Exception {
            return cal(100000000);
        }

        public static int cal (int num) {
            int sum = 0;
            for (int i = 0; i < num; i++) {
                sum += i;
            }
            return sum;
        }
    }
}

执行结果(耗时12+秒):

耗时: 12058
第0个结果: 887459712
第1个结果: 887459712
...
第999个结果: 887459712
耗时: 12405

可以看到,计算1000次1至1亿的和,使用Future模式并发执行最终的耗时比使用传统的方式快了30秒左右,使用Future模式的效率大大提高。

2.3、FutureTask

说完Future,Future因为是接口不能直接用来创建对象,就有了下面的FutureTask。

先看看FutureTask的实现:

public class FutureTask<V> implements RunnableFuture<V>

可以看到FutureTask类实现了RunnableFuture接口,接着看RunnableFuture接口源码:

public interface RunnableFuture<V> extends Runnable, Future<V> {
    /**
     * Sets this Future to the result of its computation
     * unless it has been cancelled.
     */
    void run();
}

可以看到RunnableFuture接口继承了Runnable接口和Future接口,也就是说其实FutureTask既可以作为Runnable被线程执行,也可以作为Future得到Callable的返回值。

看下面FutureTask的两个构造方法,可以看出就是为这两个操作准备的。

public FutureTask(Callable<V> var1) {
    if (var1 == null) {
        throw new NullPointerException();
    } else {
        this.callable = var1;
        this.state = 0;
    }
}

public FutureTask(Runnable var1, V var2) {
    this.callable = Executors.callable(var1, var2);
    this.state = 0;
}

FutureTask使用实例:

public class FutureTest {

    public static void main(String[] args) {
        ExecutorService executor = Executors.newCachedThreadPool();
        Calc task = new Calc();
        FutureTask<Integer> futureTask = new FutureTask<Integer>(task);
        executor.submit(futureTask);
        executor.shutdown();
    }

    public static class Calc implements Callable<Integer> {

        @Override
        public Integer call() throws Exception {
            return cal(100000000);
        }

        public static int cal (int num) {
            int sum = 0;
            for (int i = 0; i < num; i++) {
                sum += i;
            }
            return sum;
        }
    }
}

2.4、Future不足之处

上面例子可以看到使用Future模式比传统模式效率明显提高了,使用Future一定程度上可以让一个线程池内的任务异步执行;但同时也有个明显的缺点:就是回调无法放到与任务不同的线程中执行,传统回调最大的问题就是不能将控制流分离到不同的事件处理器中。比如主线程要等各个异步执行线程返回的结果来做下一步操作,就必须阻塞在future.get()方法等待结果返回,这时其实又是同步了,如果遇到某个线程执行时间太长时,那情况就更糟了。

到Java8时引入了一个新的实现类CompletableFuture,弥补了上面的缺点,在下篇会讲解CompletableFuture的使用。

作者注:原文发表在公号(点击查看),定期分享IT互联网、金融等工作经验心得、人生感悟,欢迎订阅交流,目前就职阿里-移动事业部,需要大厂内推的也可到公号砸简历。(公众号ID:weknow619)

原文地址:https://www.cnblogs.com/weknow619/p/9485420.html

时间: 2024-10-05 05:26:07

【并发编程】Future模式及JDK中的实现的相关文章

【转】Java多线程编程(十)-并发编程原理(分布式环境中并发问题)

转载地址:http://blog.csdn.net/leicool_518/article/details/42268947 在分布式环境中,处理并发问题就没办法通过操作系统和JVM的工具来解决,那么在分布式环境中,可以采取一下策略和方式来处理: 避免并发 时间戳 串行化 数据库 行锁 统一触发途径 避免并发 在分布式环境中,如果存在并发问题,那么很难通过技术去解决,或者解决的代价很大,所以我们首先要想想是不是可以通过某些策略和业务设计来避免并发.比如通过合理的时间调度,避开共享资源的存取冲突.

Java并发编程:Future接口、FutureTask类

在前面的文章中我们讲述了创建线程的2种方式,一种是直接继承Thread,另外一种就是实现Runnable接口. 这2种方式都有一个缺陷就是:在执行完任务之后无法获取执行结果. 如果需要获取执行结果,就必须通过共享变量或者使用线程通信的方式来达到效果,这样使用起来就比较麻烦. 而自从Java 1.5开始,就提供了Callable和Future,通过它们可以在任务执行完毕之后得到任务执行结果. 今天我们就来讨论一下Callable.Future和FutureTask三个类的使用方法.以下是本文的目录

《Java并发编程的艺术》--Java中的锁

No1: Lock接口 Lock lock = new ReentrantLock(); lock.lock(); try{ }finally{ lock.unlock(); } No2: 不要讲获取锁的过程写在try块中,因为如果在获取锁(自定义锁的实现)时发生了异常,异常抛出的同时,也会导致锁无故释放 No3: No4: 队列同步器(同步器)是用来构建锁或者其他同步组件的基础框架,它使用了一个int成员变量表示同步状态,通过内置的FIFO队列来完成资源获取线程的排队工作,并发包的作者期望它能

Java多线程编程中Future模式的详解&lt;转&gt;

Java多线程编程中,常用的多线程设计模式包括:Future模式.Master-Worker模式.Guarded Suspeionsion模式.不变模式和生产者-消费者模式等.这篇文章主要讲述Future模式,关于其他多线程设计模式的地址如下:关于其他多线程设计模式的地址如下:关于Master-Worker模式的详解: Java多线程编程中Master-Worker模式的详解关于Guarded Suspeionsion模式的详解: Java多线程编程中Guarded Suspeionsion模式

Java中的Future模式原理自定义实现

摘要:Future模式类似于js中的ajax等,是一个异步获取数据的机制,这里我把自己的一些形象理解通过代码实现了一下.该机制可以形象的理解为:调用获取数据的方法,首先获得一个没有装数据的空箱子(这个箱子有获取数据和装载数据的机制),至于箱子中的数据是通过另开一个线程去获取的,隔一段时间之后,当我们想要获取箱子中的数据的时候,就直接从箱子中拿就行了,一般情况下,由于获取到箱子之后到我需要从箱子中拿取数据应该已经过了一段时间(因为做其他一些操作),正是这一段时间,数据通过其它线程已经 Future

Java Thread系列(十)Future 模式

Java Thread系列(十)Future 模式 Future 模式适合在处理很耗时的业务逻辑时进行使用,可以有效的减少系统的响应时间,提高系统的吞吐量. 一.Future 模式核心思想 如下的请求调用过程时序图.当 call 请求发出时,需要很长的时间才能返回.左边的图需要一直等待,等返回数据后才能继续其他操作:而右边的 Future 模式的图中客户端则无需等到可以做其他的事情.服务器段接收到请求后立即返回结果给客户端,这个结果并不是真实的结果(是虚拟的结果),也就 是先获得一个假数据,然后

并行设计模式(一)-- Future模式

Java多线程编程中,常用的多线程设计模式包括:Future模式.Master-Worker模式.Guarded Suspeionsion模式.不变模式和生产者-消费者模式等.这篇文章主要讲述Future模式,关于其他多线程设计模式的地址如下: 关于Master-Worker模式的详解:并行设计模式(二)-- Master-Worker模式 关于Guarded Suspeionsion模式的详解:并行设计模式(三)-- Guarded Suspeionsion模式 关于不变模式的详解:并行设计模

java Future模式

Java多线程编程中,常用的多线程设计模式包括:Future模式.Master-Worker模式.Guarded Suspeionsion模式.不变模式和生产者-消费者模式等.这篇文章主要讲述Future模式,关于其他多线程设计模式的地址如下:关于其他多线程设计模式的地址如下:关于Master-Worker模式的详解: Java多线程编程中Master-Worker模式的详解关于Guarded Suspeionsion模式的详解: Java多线程编程中Guarded Suspeionsion模式

并发编程实践五:ReentrantLock

ReentrantLock是一个可重入的互斥锁,实现了接口Lock,和synchronized相比,它们提供了相同的功能,但ReentrantLock使用更灵活,功能更强大,也更复杂.这篇文章将为你介绍ReentrantLock,以及它的实现机制. ReentrantLock介绍 通常,ReentrantLock按下面的方式使用: public class ReentrantLockTest { private final ReentrantLock lock = new ReentrantLo