zookeeper学习实践1-实现分布式锁

引言

ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。

ZooKeeper的架构通过冗余服务实现高可用性。因此,如果第一次无应答,客户端就可以询问另一台ZooKeeper主机。ZooKeeper节点将它们的数据存储于一个分层的命名空间,非常类似于一个文件系统或一个前缀树结构。客户端可以在节点读写,从而以这种方式拥有一个共享的配置服务。更新是全序的。

基于ZooKeeper分布式锁的流程

  • 在zookeeper指定节点(locks)下创建临时顺序节点node_n
  • 获取locks下所有子节点children
  • 对子节点按节点自增序号从小到大排序
  • 判断本节点是不是第一个子节点,若是,则获取锁;若不是,则监听比该节点小的那个节点的删除事件
  • 若监听事件生效,则回到第二步重新进行判断,直到获取到锁

具体实现

下面就具体使用java和zookeeper实现分布式锁,操作zookeeper使用的是apache提供的zookeeper的包。

  • 通过实现Watch接口,实现process(WatchedEvent event)方法来实施监控,使CountDownLatch来完成监控,在等待锁的时候使用CountDownLatch来计数,等到后进行countDown,停止等待,继续运行。
  • 以下整体流程基本与上述描述流程一致,只是在监听的时候使用的是CountDownLatch来监听前一个节点。

分布式锁

import org.apache.zookeeper.*;
import org.apache.zookeeper.data.Stat;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;

/**
 * Created by liuyang on 2017/4/20.
 */
public class DistributedLock implements Lock, Watcher {
    private ZooKeeper zk = null;
    // 根节点
    private String ROOT_LOCK = "/locks";
    // 竞争的资源
    private String lockName;
    // 等待的前一个锁
    private String WAIT_LOCK;
    // 当前锁
    private String CURRENT_LOCK;
    // 计数器
    private CountDownLatch countDownLatch;
    private int sessionTimeout = 30000;
    private List<Exception> exceptionList = new ArrayList<Exception>();

    /**
     * 配置分布式锁
     * @param config 连接的url
     * @param lockName 竞争资源
     */
    public DistributedLock(String config, String lockName) {
        this.lockName = lockName;
        try {
            // 连接zookeeper
            zk = new ZooKeeper(config, sessionTimeout, this);
            Stat stat = zk.exists(ROOT_LOCK, false);
            if (stat == null) {
                // 如果根节点不存在,则创建根节点
                zk.create(ROOT_LOCK, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
            }
        } catch (IOException e) {
            e.printStackTrace();
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (KeeperException e) {
            e.printStackTrace();
        }
    }

    // 节点监视器
    public void process(WatchedEvent event) {
        if (this.countDownLatch != null) {
            this.countDownLatch.countDown();
        }
    }

    public void lock() {
        if (exceptionList.size() > 0) {
            throw new LockException(exceptionList.get(0));
        }
        try {
            if (this.tryLock()) {
                System.out.println(Thread.currentThread().getName() + " " + lockName + "获得了锁");
                return;
            } else {
                // 等待锁
                waitForLock(WAIT_LOCK, sessionTimeout);
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (KeeperException e) {
            e.printStackTrace();
        }
    }

    public boolean tryLock() {
        try {
            String splitStr = "_lock_";
            if (lockName.contains(splitStr)) {
                throw new LockException("锁名有误");
            }
            // 创建临时有序节点
            CURRENT_LOCK = zk.create(ROOT_LOCK + "/" + lockName + splitStr, new byte[0],
                    ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
            System.out.println(CURRENT_LOCK + " 已经创建");
            // 取所有子节点
            List<String> subNodes = zk.getChildren(ROOT_LOCK, false);
            // 取出所有lockName的锁
            List<String> lockObjects = new ArrayList<String>();
            for (String node : subNodes) {
                String _node = node.split(splitStr)[0];
                if (_node.equals(lockName)) {
                    lockObjects.add(node);
                }
            }
            Collections.sort(lockObjects);
            System.out.println(Thread.currentThread().getName() + " 的锁是 " + CURRENT_LOCK);
            // 若当前节点为最小节点,则获取锁成功
            if (CURRENT_LOCK.equals(ROOT_LOCK + "/" + lockObjects.get(0))) {
                return true;
            }

            // 若不是最小节点,则找到自己的前一个节点
            String prevNode = CURRENT_LOCK.substring(CURRENT_LOCK.lastIndexOf("/") + 1);
            WAIT_LOCK = lockObjects.get(Collections.binarySearch(lockObjects, prevNode) - 1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (KeeperException e) {
            e.printStackTrace();
        }
        return false;
    }

    public boolean tryLock(long timeout, TimeUnit unit) {
        try {
            if (this.tryLock()) {
                return true;
            }
            return waitForLock(WAIT_LOCK, timeout);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return false;
    }

    // 等待锁
    private boolean waitForLock(String prev, long waitTime) throws KeeperException, InterruptedException {
        Stat stat = zk.exists(ROOT_LOCK + "/" + prev, true);

        if (stat != null) {
            System.out.println(Thread.currentThread().getName() + "等待锁 " + ROOT_LOCK + "/" + prev);
            this.countDownLatch = new CountDownLatch(1);
            // 计数等待,若等到前一个节点消失,则precess中进行countDown,停止等待,获取锁
            this.countDownLatch.await(waitTime, TimeUnit.MILLISECONDS);
            this.countDownLatch = null;
            System.out.println(Thread.currentThread().getName() + " 等到了锁");
        }
        return true;
    }

    public void unlock() {
        try {
            System.out.println("释放锁 " + CURRENT_LOCK);
            zk.delete(CURRENT_LOCK, -1);
            CURRENT_LOCK = null;
            zk.close();
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (KeeperException e) {
            e.printStackTrace();
        }
    }

    public Condition newCondition() {
        return null;
    }

    public void lockInterruptibly() throws InterruptedException {
        this.lock();
    }

    public class LockException extends RuntimeException {
        private static final long serialVersionUID = 1L;
        public LockException(String e){
            super(e);
        }
        public LockException(Exception e){
            super(e);
        }
    }
}

测试代码

public class Test {
    static int n = 500;

    public static void secskill() {
        System.out.println(--n);
    }

    public static void main(String[] args) {

        Runnable runnable = new Runnable() {
            public void run() {
                DistributedLock lock = null;
                try {
                    lock = new DistributedLock("127.0.0.1:2181", "test1");
                    lock.lock();
                    secskill();
                    System.out.println(Thread.currentThread().getName() + "正在运行");
                } finally {
                    if (lock != null) {
                        lock.unlock();
                    }
                }
            }
        };

        for (int i = 0; i < 10; i++) {
            Thread t = new Thread(runnable);
            t.start();
        }
    }
}

运行结果:

总体来说,如果了解到整个实现流程,使用zookeeper实现分布式锁并不是很困难,不过这也只是一个简单的实现,与前面实现Redis实现相比,本实现的稳定性更强,这是因为zookeeper的特性所致,在外界看来,zookeeper集群中每一个节点都是一致的。

完整代码可以在我的GitHub中查看:https://github.com/yangliu0/DistributedLock

参考文章:

1、 分布式锁与实现(二)——基于ZooKeeper实现

原文地址:https://www.cnblogs.com/snowwhite/p/9131410.html

时间: 2024-08-08 02:59:13

zookeeper学习实践1-实现分布式锁的相关文章

关于分布式锁原理的一些学习与思考-redis分布式锁,zookeeper分布式锁

首先分布式锁和我们平常讲到的锁原理基本一样,目的就是确保,在多个线程并发时,只有一个线程在同一刻操作这个业务或者说方法.变量. 在一个进程中,也就是一个jvm 或者说应用中,我们很容易去处理控制,在jdk java.util 并发包中已经为我们提供了这些方法去加锁, 比如synchronized 关键字 或者Lock 锁,都可以处理. 但是我们现在的应用程序如果只部署一台服务器,那并发量是很差的,如果同时有上万的请求那么很有可能造成服务器压力过大,而瘫痪. 想想双十一 和 三十晚上十点分支付宝红

zookeeper应用场景练习(分布式锁)

在平常的高并发的程序中,为了保证数据的一致性,因此都会用到锁,来对当前的线程进行锁定.在单机操作中,很好做到,比如可以采用Synchronized.Lock或者其他的读写多来锁定当前的线程.但是在分布式的系统中,就很难做到这一点.因此可以采用zookeeper中节点的特性来满足这一点.大致实现的思路如下. 1.每个客户端都去zookeeper上创建临时的顺序节点 2.客户端判断当前自己创建的节点是不是最小的 3.如果是的话,就获得了执行当前任务的锁 4.如果不是的话,就找到比自己小的节点,然后进

分布式锁2 Java非常用技术方案探讨之ZooKeeper

前言:       由于在平时的工作中,线上服务器是分布式多台部署的,经常会面临解决分布式场景下数据一致性的问题,那么就要利用分布式锁来解决这些问题.以自己结合实际工作中的一些经验和网上看到的一些资料,做一个讲解和总结.之前我已经写了一篇关于分布式锁的文章: 分布式锁1 Java常用技术方案 .上一篇文章中主要写的是在日常项目中,较为常见的几种实现分布式锁的方法.通过这些方法,基本上可以解决我们日常工作中大部分场景下使用分布式锁的问题.       本篇文章主要是在上一篇文章的基础上,介绍一些虽

分布式锁实现大型连续剧之(二):Zookeeper

前言 紧跟上文的:分布式锁实现(一):Redis ,这篇我们用Zookeeper来设计和实现分布式锁,并且研究下开源客户端工具Curator的分布式锁源码 设计实现 一.基本算法 1.在某父节点下创建临时有序节点2.判断创建的节点是否是当前父节点下所有子节点中序号最小的3.是序号最小的成功获取锁,否则监听比自己小的那个节点,进行watch,当该节点被删除的时候通知当前节点,重新获取锁4.解锁的时候删除当前节点 二.关键点 临时有序节点实现Zookeeper分布式锁关键就在于其[临时有序节点]的特

Curator实现zookeeper分布式锁的基本原理

一.写在前面 之前写过一篇文章(<拜托,面试请不要再问我Redis分布式锁的实现原理>),给大家说了一下Redisson这个开源框架是如何实现Redis分布式锁原理的,这篇文章再给大家聊一下ZooKeeper实现分布式锁的原理. 同理,我是直接基于比较常用的Curator这个开源框架,聊一下这个框架对ZooKeeper(以下简称zk)分布式锁的实现. 一般除了大公司是自行封装分布式锁框架之外,建议大家用这些开源框架封装好的分布式锁实现,这是一个比较快捷省事儿的方式. 二.ZooKeeper分布

彻底讲清楚ZooKeeper分布式锁的实现原理

一.写在前面 之前写过一篇文章(<拜托,面试请不要再问我Redis分布式锁的实现原理>),给大家说了一下Redisson这个开源框架是如何实现Redis分布式锁原理的,这篇文章再给大家聊一下ZooKeeper实现分布式锁的原理. 同理,我是直接基于比较常用的Curator这个开源框架,聊一下这个框架对ZooKeeper(以下简称zk)分布式锁的实现. 一般除了大公司是自行封装分布式锁框架之外,建议大家用这些开源框架封装好的分布式锁实现,这是一个比较快捷省事儿的方式. 二.ZooKeeper分布

聊一聊分布式锁的设计

起因 前段时间,看到redis作者发布的一篇文章<Is Redlock safe?>,Redlock是redis作者基于redis设计的分布式锁的算法.文章起因是有一位分布式的专家写了一篇文章<How to do distributed locking>,质疑Redlock的正确性.redis作者则在<Is Redlock safe?>文章中给予回应,一来一回甚是精彩.文本就为读者一一解析两位专家的争论. 在了解两位专家的争论前,让我先从我了解的分布式锁一一道来.文章中

ZooKeeper学习第一期---Zookeeper简单介绍

该系列来源 http://www.cnblogs.com/wuxl360/p/5817471.html 一.分布式协调技术 在给大家介绍ZooKeeper之前先来给大家介绍一种技术--分布式协调技术.那么什么是分布式协调技术?那么我来告诉大家,其实分布式协调技术 主要用来解决分布式环境当中多个进程之间的同步控制,让他们有序的去访问某种临界资源,防止造成"脏数据"的后果.这时,有人可能会说这个简单,写一个调 度算法就轻松解决了.说这句话的人,可能对分布式系统不是很了解,所以才会出现这种误

java 分布式锁 -图解- 秒懂

目录 写在前面 1.1. 分布式锁 简介 1.1.1. 图解:公平锁和可重入锁 模型 1.1.2. 图解: zookeeper分布式锁的原理 1.1.3. 分布式锁的基本流程 1.1.4. 加锁的实现 1.1.5. 释放锁的实现 1.1.1. 分布式锁的应用场景 写在最后 疯狂创客圈 亿级流量 高并发IM 实战 系列 疯狂创客圈 Java 分布式聊天室[ 亿级流量]实战系列之 -26[ 博客园 总入口 ] 写在前面 ? 大家好,我是作者尼恩.目前和几个小伙伴一起,组织了一个高并发的实战社群[疯狂