Python设计模式(4):行为型

承接Python设计模式(3):结构型

13. Interpreter(解释器)

意图:给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子。

适用性:

  • 当有一个语言需要解释执行, 并且你可将该语言中的句子表示为一个抽象语法树时,可使用解释器模式。而当存在以下情况时该模式效果最好:
  • 该文法简单对于复杂的文法, 文法的类层次变得庞大而无法管理。此时语法分析程序生成器这样的工具是更好的选择。它们无需构建抽象语法树即可解释表达式, 这样可以节省空间而且还可能节省时间。
  • 效率不是一个关键问题最高效的解释器通常不是通过直接解释语法分析树实现的, 而是首先将它们转换成另一种形式。例如,正则表达式通常被转换成状态机。但即使在这种情况下, 转换器仍可用解释器模式实现, 该模式仍是有用的。
#!/usr/bin/python
#coding:utf8
‘‘‘
Interpreter
‘‘‘

class Context:
    def __init__(self):
        self.input=""
        self.output=""

class AbstractExpression:
    def Interpret(self,context):
        pass

class Expression(AbstractExpression):
    def Interpret(self,context):
        print "terminal interpret"

class NonterminalExpression(AbstractExpression):
    def Interpret(self,context):
        print "Nonterminal interpret"

if __name__ == "__main__":
    context= ""
    c = []
    c = c + [Expression()]
    c = c + [NonterminalExpression()]
    c = c + [Expression()]
    c = c + [Expression()]
    for a in c:
        a.Interpret(context)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

14. Template Method(模板方法)

意图:定义一个操作中的算法的骨架,而将一些步骤延迟到子类中。TemplateMethod 使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。

适用性:

  • 一次性实现一个算法的不变的部分,并将可变的行为留给子类来实现。
  • 各子类中公共的行为应被提取出来并集中到一个公共父类中以避免代码重复。这是Opdyke 和Johnson所描述过的“重分解以一般化”的一个很好的例子[ OJ93 ]。首先识别现有代码中的不同之处,并且将不同之处分离为新的操作。最后,用一个调用这些新的操作的模板方法来替换这些不同的代码。
  • 控制子类扩展。模板方法只在特定点调用“hook ”操作(参见效果一节),这样就只允许在这些点进行扩展。
#!/usr/bin/python
#coding:utf8
‘‘‘
Template Method
‘‘‘

ingredients = "spam eggs apple"
line = ‘-‘ * 10

# Skeletons
def iter_elements(getter, action):
    """Template skeleton that iterates items"""
    for element in getter():
        action(element)
        print(line) 

def rev_elements(getter, action):
    """Template skeleton that iterates items in reverse order"""
    for element in getter()[::-1]:
        action(element)
        print(line) 

# Getters
def get_list():
    return ingredients.split() 

def get_lists():
    return [list(x) for x in ingredients.split()] 

# Actions
def print_item(item):
    print(item) 

def reverse_item(item):
    print(item[::-1]) 

# Makes templates
def make_template(skeleton, getter, action):
    """Instantiate a template method with getter and action"""
    def template():
        skeleton(getter, action)
    return template 

# Create our template functions
templates = [make_template(s, g, a)
             for g in (get_list, get_lists)
             for a in (print_item, reverse_item)
             for s in (iter_elements, rev_elements)] 

# Execute them
for template in templates:
    template()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52

15. Chain of Responsibility(责任链)

意图:使多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系。将这些对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它为止。

适用性:

  • 有多个的对象可以处理一个请求,哪个对象处理该请求运行时刻自动确定。
  • 你想在不明确指定接收者的情况下,向多个对象中的一个提交一个请求。
  • 可处理一个请求的对象集合应被动态指定。
#!/usr/bin/python
#coding:utf8

"""
Chain
"""
class Handler:
    def successor(self, successor):
        self.successor = successor

class ConcreteHandler1(Handler):
    def handle(self, request):
        if request > 0 and request <= 10:
            print("in handler1")
        else:
            self.successor.handle(request)

class ConcreteHandler2(Handler):
    def handle(self, request):
        if request > 10 and request <= 20:
            print("in handler2")
        else:
            self.successor.handle(request)

class ConcreteHandler3(Handler):
    def handle(self, request):
        if request > 20 and request <= 30:
            print("in handler3")
        else:
            print(‘end of chain, no handler for {}‘.format(request))

class Client:
    def __init__(self):
        h1 = ConcreteHandler1()
        h2 = ConcreteHandler2()
        h3 = ConcreteHandler3()

        h1.successor(h2)
        h2.successor(h3)

        requests = [2, 5, 14, 22, 18, 3, 35, 27, 20]
        for request in requests:
            h1.handle(request)

if __name__ == "__main__":
    client = Client()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46

16. Command(命令)

意图:将一个请求封装为一个对象,从而使你可用不同的请求对客户进行参数化;对请求排队或记录请求日志,以及支持可撤消的操作。

适用性:

  • 抽象出待执行的动作以参数化某对象,你可用过程语言中的回调(call back)函数表达这种参数化机制。所谓回调函数是指函数先在某处注册,而它将在稍后某个需要的时候被调用。Command 模式是回调机制的一个面向对象的替代品。
  • 在不同的时刻指定、排列和执行请求。一个Command对象可以有一个与初始请求无关的生存期。如果一个请求的接收者可用一种与地址空间无关的方式表达,那么就可将负责该请求的命令对象传送给另一个不同的进程并在那儿实现该请求。
  • 支持取消操作。Command的Excute 操作可在实施操作前将状态存储起来,在取消操作时这个状态用来消除该操作的影响。Command 接口必须添加一个Unexecute操作,该操作取消上一次Execute调用的效果。执行的命令被存储在一个历史列表中。可通过向后和向前遍历这一列表并分别调用Unexecute和Execute来实现重数不限的“取消”和“重做”。
  • 支持修改日志,这样当系统崩溃时,这些修改可以被重做一遍。在Command接口中添加装载操作和存储操作,可以用来保持变动的一个一致的修改日志。从崩溃中恢复的过程包括从磁盘中重新读入记录下来的命令并用Execute操作重新执行它们。
  • 用构建在原语操作上的高层操作构造一个系统。这样一种结构在支持事务( transaction)的信息系统中很常见。一个事务封装了对数据的一组变动。Command模式提供了对事务进行建模的方法。Command有一个公共的接口,使得你可以用同一种方式调用所有的事务。同时使用该模式也易于添加新事务以扩展系统。
#!/usr/bin/python
#coding:utf8

"""
Command
"""
import os

class MoveFileCommand(object):
    def __init__(self, src, dest):
        self.src = src
        self.dest = dest

    def execute(self):
        self()

    def __call__(self):
        print(‘renaming {} to {}‘.format(self.src, self.dest))
        os.rename(self.src, self.dest)

    def undo(self):
        print(‘renaming {} to {}‘.format(self.dest, self.src))
        os.rename(self.dest, self.src)

if __name__ == "__main__":
    command_stack = []

    # commands are just pushed into the command stack
    command_stack.append(MoveFileCommand(‘foo.txt‘, ‘bar.txt‘))
    command_stack.append(MoveFileCommand(‘bar.txt‘, ‘baz.txt‘))

    # they can be executed later on
    for cmd in command_stack:
        cmd.execute()

    # and can also be undone at will
    for cmd in reversed(command_stack):
        cmd.undo()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39

17. Iterator(迭代器)

意图:提供一种方法顺序访问一个聚合对象中各个元素, 而又不需暴露该对象的内部表示。

适用性:

  • 访问一个聚合对象的内容而无需暴露它的内部表示。
  • 支持对聚合对象的多种遍历。
  • 为遍历不同的聚合结构提供一个统一的接口(即, 支持多态迭代)。
#!/usr/bin/python
#coding:utf8
‘‘‘
Interator
‘‘‘
def count_to(count):
    """Counts by word numbers, up to a maximum of five"""
    numbers = ["one", "two", "three", "four", "five"]
    # enumerate() returns a tuple containing a count (from start which
    # defaults to 0) and the values obtained from iterating over sequence
    for pos, number in zip(range(count), numbers):
        yield number

# Test the generator
count_to_two = lambda: count_to(2)
count_to_five = lambda: count_to(5)

print(‘Counting to two...‘)
for number in count_to_two():
    print number

print " "

print(‘Counting to five...‘)
for number in count_to_five():
    print number

print " "
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

18. Mediator(中介者)

意图:用一个中介对象来封装一系列的对象交互。中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。

适用性:

  • 一组对象以定义良好但是复杂的方式进行通信。产生的相互依赖关系结构混乱且难以理解。
  • 一个对象引用其他很多对象并且直接与这些对象通信,导致难以复用该对象。
  • 想定制一个分布在多个类中的行为,而又不想生成太多的子类。
#!/usr/bin/python
#coding:utf8
‘‘‘
Mediator
‘‘‘
"""http://dpip.testingperspective.com/?p=28"""

import time

class TC:
    def __init__(self):
        self._tm = tm
        self._bProblem = 0

    def setup(self):
        print("Setting up the Test")
        time.sleep(1)
        self._tm.prepareReporting()

    def execute(self):
        if not self._bProblem:
            print("Executing the test")
            time.sleep(1)
        else:
            print("Problem in setup. Test not executed.")

    def tearDown(self):
        if not self._bProblem:
            print("Tearing down")
            time.sleep(1)
            self._tm.publishReport()
        else:
            print("Test not executed. No tear down required.")

    def setTM(self, TM):
        self._tm = tm

    def setProblem(self, value):
        self._bProblem = value

class Reporter:
    def __init__(self):
        self._tm = None

    def prepare(self):
        print("Reporter Class is preparing to report the results")
        time.sleep(1)

    def report(self):
        print("Reporting the results of Test")
        time.sleep(1)

    def setTM(self, TM):
        self._tm = tm

class DB:
    def __init__(self):
        self._tm = None

    def insert(self):
        print("Inserting the execution begin status in the Database")
        time.sleep(1)
        #Following code is to simulate a communication from DB to TC
        import random
        if random.randrange(1, 4) == 3:
            return -1

    def update(self):
        print("Updating the test results in Database")
        time.sleep(1)

    def setTM(self, TM):
        self._tm = tm

class TestManager:
    def __init__(self):
        self._reporter = None
        self._db = None
        self._tc = None

    def prepareReporting(self):
        rvalue = self._db.insert()
        if rvalue == -1:
            self._tc.setProblem(1)
            self._reporter.prepare()

    def setReporter(self, reporter):
        self._reporter = reporter

    def setDB(self, db):
        self._db = db

    def publishReport(self):
        self._db.update()
        rvalue = self._reporter.report()

    def setTC(self, tc):
        self._tc = tc

if __name__ == ‘__main__‘:
    reporter = Reporter()
    db = DB()
    tm = TestManager()
    tm.setReporter(reporter)
    tm.setDB(db)
    reporter.setTM(tm)
    db.setTM(tm)
    # For simplification we are looping on the same test.
    # Practically, it could be about various unique test classes and their
    # objects
    while (True):
        tc = TC()
        tc.setTM(tm)
        tm.setTC(tc)
        tc.setup()
        tc.execute()
        tc.tearDown()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118

19. Memento(备忘录)

意图:在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态。这样以后就可将该对象恢复到原先保存的状态。

适用性:

  • 必须保存一个对象在某一个时刻的(部分)状态, 这样以后需要时它才能恢复到先前的状态。
  • 如果一个用接口来让其它对象直接得到这些状态,将会暴露对象的实现细节并破坏对象的封装性。
#!/usr/bin/python
#coding:utf8
‘‘‘
Memento
‘‘‘

import copy

def Memento(obj, deep=False):
    state = (copy.copy, copy.deepcopy)[bool(deep)](obj.__dict__)

    def Restore():
        obj.__dict__.clear()
        obj.__dict__.update(state)
    return Restore

class Transaction:
    """A transaction guard. This is really just
      syntactic suggar arount a memento closure.
      """
    deep = False

    def __init__(self, *targets):
        self.targets = targets
        self.Commit()

    def Commit(self):
        self.states = [Memento(target, self.deep) for target in self.targets]

    def Rollback(self):
        for st in self.states:
            st()

class transactional(object):
    """Adds transactional semantics to methods. Methods decorated  with
    @transactional will rollback to entry state upon exceptions.
    """
    def __init__(self, method):
        self.method = method

    def __get__(self, obj, T):
        def transaction(*args, **kwargs):
            state = Memento(obj)
            try:
                return self.method(obj, *args, **kwargs)
            except:
                state()
                raise
        return transaction

class NumObj(object):
    def __init__(self, value):
        self.value = value

    def __repr__(self):
        return ‘<%s: %r>‘ % (self.__class__.__name__, self.value)

    def Increment(self):
        self.value += 1

    @transactional
    def DoStuff(self):
        self.value = ‘1111‘  # <- invalid value
        self.Increment()     # <- will fail and rollback

if __name__ == ‘__main__‘:
    n = NumObj(-1)
    print(n)
    t = Transaction(n)
    try:
        for i in range(3):
            n.Increment()
            print(n)
        t.Commit()
        print(‘-- commited‘)
        for i in range(3):
            n.Increment()
            print(n)
        n.value += ‘x‘  # will fail
        print(n)
    except:
        t.Rollback()
        print(‘-- rolled back‘)
    print(n)
    print(‘-- now doing stuff ...‘)
    try:
        n.DoStuff()
    except:
        print(‘-> doing stuff failed!‘)
        import traceback
        traceback.print_exc(0)
        pass
    print(n)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93

20. Observer(观察者)

意图:定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时, 所有依赖于它的对象都得到通知并被自动更新。

适用性:

  • 当一个抽象模型有两个方面, 其中一个方面依赖于另一方面。将这二者封装在独立的对象中以使它们可以各自独立地改变和复用。
  • 当对一个对象的改变需要同时改变其它对象, 而不知道具体有多少对象有待改变。
  • 当一个对象必须通知其它对象,而它又不能假定其它对象是谁。换言之, 你不希望这些对象是紧密耦合的。
#!/usr/bin/python
#coding:utf8
‘‘‘
Observer
‘‘‘

class Subject(object):
    def __init__(self):
        self._observers = []

    def attach(self, observer):
        if not observer in self._observers:
            self._observers.append(observer)

    def detach(self, observer):
        try:
            self._observers.remove(observer)
        except ValueError:
            pass

    def notify(self, modifier=None):
        for observer in self._observers:
            if modifier != observer:
                observer.update(self)

# Example usage
class Data(Subject):
    def __init__(self, name=‘‘):
        Subject.__init__(self)
        self.name = name
        self._data = 0

    @property
    def data(self):
        return self._data

    @data.setter
    def data(self, value):
        self._data = value
        self.notify()

class HexViewer:
    def update(self, subject):
        print(‘HexViewer: Subject %s has data 0x%x‘ %
              (subject.name, subject.data))

class DecimalViewer:
    def update(self, subject):
        print(‘DecimalViewer: Subject %s has data %d‘ %
              (subject.name, subject.data))

# Example usage...
def main():
    data1 = Data(‘Data 1‘)
    data2 = Data(‘Data 2‘)
    view1 = DecimalViewer()
    view2 = HexViewer()
    data1.attach(view1)
    data1.attach(view2)
    data2.attach(view2)
    data2.attach(view1)

    print("Setting Data 1 = 10")
    data1.data = 10
    print("Setting Data 2 = 15")
    data2.data = 15
    print("Setting Data 1 = 3")
    data1.data = 3
    print("Setting Data 2 = 5")
    data2.data = 5
    print("Detach HexViewer from data1 and data2.")
    data1.detach(view2)
    data2.detach(view2)
    print("Setting Data 1 = 10")
    data1.data = 10
    print("Setting Data 2 = 15")
    data2.data = 15

if __name__ == ‘__main__‘:
    main()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81

21. State(状态)

意图:允许一个对象在其内部状态改变时改变它的行为。对象看起来似乎修改了它的类。

适用性:

  • 一个对象的行为取决于它的状态, 并且它必须在运行时刻根据状态改变它的行为。
  • 一个操作中含有庞大的多分支的条件语句,且这些分支依赖于该对象的状态。这个状态通常用一个或多个枚举常量表示。通常, 有多个操作包含这一相同的条件结构。State模式将每一个条件分支放入一个独立的类中。这使得你可以根据对象自身的情况将对象的状态作为一个对象,这一对象可以不依赖于其他对象而独立变化。
#!/usr/bin/python
#coding:utf8
‘‘‘
State
‘‘‘

class State(object):
    """Base state. This is to share functionality"""

    def scan(self):
        """Scan the dial to the next station"""
        self.pos += 1
        if self.pos == len(self.stations):
            self.pos = 0
        print("Scanning... Station is", self.stations[self.pos], self.name)

class AmState(State):
    def __init__(self, radio):
        self.radio = radio
        self.stations = ["1250", "1380", "1510"]
        self.pos = 0
        self.name = "AM"

    def toggle_amfm(self):
        print("Switching to FM")
        self.radio.state = self.radio.fmstate

class FmState(State):
    def __init__(self, radio):
        self.radio = radio
        self.stations = ["81.3", "89.1", "103.9"]
        self.pos = 0
        self.name = "FM"

    def toggle_amfm(self):
        print("Switching to AM")
        self.radio.state = self.radio.amstate

class Radio(object):
    """A radio.     It has a scan button, and an AM/FM toggle switch."""
    def __init__(self):
        """We have an AM state and an FM state"""
        self.amstate = AmState(self)
        self.fmstate = FmState(self)
        self.state = self.amstate

    def toggle_amfm(self):
        self.state.toggle_amfm()

    def scan(self):
        self.state.scan()

# Test our radio out
if __name__ == ‘__main__‘:
    radio = Radio()
    actions = [radio.scan] * 2 + [radio.toggle_amfm] + [radio.scan] * 2
    actions = actions * 2

    for action in actions:
        action()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61

22. Strategy(策略)

意图:定义一系列的算法,把它们一个个封装起来, 并且使它们可相互替换。本模式使得算法可独立于使用它的客户而变化。

适用性:

  • 许多相关的类仅仅是行为有异。“策略”提供了一种用多个行为中的一个行为来配置一个类的方法。
  • 需要使用一个算法的不同变体。例如,你可能会定义一些反映不同的空间/时间权衡的算法。当这些变体实现为一个算法的类层次时[H087] ,可以使用策略模式。
  • 算法使用客户不应该知道的数据。可使用策略模式以避免暴露复杂的、与算法相关的数据结构。
  • 一个类定义了多种行为, 并且这些行为在这个类的操作中以多个条件语句的形式出现。将相关的条件分支移入它们各自的Strategy类中以代替这些条件语句。
#!/usr/bin/python
#coding:utf8
"""
Strategy
In most of other languages Strategy pattern is implemented via creating some base strategy interface/abstract class and
subclassing it with a number of concrete strategies (as we can see at http://en.wikipedia.org/wiki/Strategy_pattern),
however Python supports higher-order functions and allows us to have only one class and inject functions into it‘s
instances, as shown in this example.
"""
import types

class StrategyExample:
    def __init__(self, func=None):
        self.name = ‘Strategy Example 0‘
        if func is not None:
            self.execute = types.MethodType(func, self)     

    def execute(self):
        print(self.name)  

def execute_replacement1(self):
    print(self.name + ‘ from execute 1‘)  

def execute_replacement2(self):
    print(self.name + ‘ from execute 2‘) 

if __name__ == ‘__main__‘:
    strat0 = StrategyExample()    

    strat1 = StrategyExample(execute_replacement1)
    strat1.name = ‘Strategy Example 1‘    

    strat2 = StrategyExample(execute_replacement2)
    strat2.name = ‘Strategy Example 2‘

    strat0.execute()
    strat1.execute()
    strat2.execute()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39

23. Visitor(访问者)

意图:定义一个操作中的算法的骨架,而将一些步骤延迟到子类中。TemplateMethod 使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。

适用性:

  • 一次性实现一个算法的不变的部分,并将可变的行为留给子类来实现。
  • 各子类中公共的行为应被提取出来并集中到一个公共父类中以避免代码重复。这是Opdyke和Johnson所描述过的“重分解以一般化”的一个很好的例子[OJ93]。首先识别现有代码中的不同之处,并且将不同之处分离为新的操作。最后,用一个调用这些新的操作的模板方法来替换这些不同的代码。
  • 控制子类扩展。模板方法只在特定点调用“hook ”操作(参见效果一节),这样就只允许在这些点进行扩展。
#!/usr/bin/python
#coding:utf8
‘‘‘
Visitor
‘‘‘
class Node(object):
    pass

class A(Node):
    pass

class B(Node):
    pass

class C(A, B):
    pass

class Visitor(object):
    def visit(self, node, *args, **kwargs):
        meth = None
        for cls in node.__class__.__mro__:
            meth_name = ‘visit_‘+cls.__name__
            meth = getattr(self, meth_name, None)
            if meth:
                break

        if not meth:
            meth = self.generic_visit
        return meth(node, *args, **kwargs)

    def generic_visit(self, node, *args, **kwargs):
        print(‘generic_visit ‘+node.__class__.__name__)

    def visit_B(self, node, *args, **kwargs):
        print(‘visit_B ‘+node.__class__.__name__)

a = A()
b = B()
c = C()

visitor = Visitor()
visitor.visit(a)
visitor.visit(b)
visitor.visit(c)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44

参考文章

https://www.cnblogs.com/Liqiongyu/p/5916710.html

承接Python设计模式(3):结构型

13. Interpreter(解释器)

意图:给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子。

适用性:

  • 当有一个语言需要解释执行, 并且你可将该语言中的句子表示为一个抽象语法树时,可使用解释器模式。而当存在以下情况时该模式效果最好:
  • 该文法简单对于复杂的文法, 文法的类层次变得庞大而无法管理。此时语法分析程序生成器这样的工具是更好的选择。它们无需构建抽象语法树即可解释表达式, 这样可以节省空间而且还可能节省时间。
  • 效率不是一个关键问题最高效的解释器通常不是通过直接解释语法分析树实现的, 而是首先将它们转换成另一种形式。例如,正则表达式通常被转换成状态机。但即使在这种情况下, 转换器仍可用解释器模式实现, 该模式仍是有用的。
#!/usr/bin/python
#coding:utf8
‘‘‘
Interpreter
‘‘‘

class Context:
    def __init__(self):
        self.input=""
        self.output=""

class AbstractExpression:
    def Interpret(self,context):
        pass

class Expression(AbstractExpression):
    def Interpret(self,context):
        print "terminal interpret"

class NonterminalExpression(AbstractExpression):
    def Interpret(self,context):
        print "Nonterminal interpret"

if __name__ == "__main__":
    context= ""
    c = []
    c = c + [Expression()]
    c = c + [NonterminalExpression()]
    c = c + [Expression()]
    c = c + [Expression()]
    for a in c:
        a.Interpret(context)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

14. Template Method(模板方法)

意图:定义一个操作中的算法的骨架,而将一些步骤延迟到子类中。TemplateMethod 使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。

适用性:

  • 一次性实现一个算法的不变的部分,并将可变的行为留给子类来实现。
  • 各子类中公共的行为应被提取出来并集中到一个公共父类中以避免代码重复。这是Opdyke 和Johnson所描述过的“重分解以一般化”的一个很好的例子[ OJ93 ]。首先识别现有代码中的不同之处,并且将不同之处分离为新的操作。最后,用一个调用这些新的操作的模板方法来替换这些不同的代码。
  • 控制子类扩展。模板方法只在特定点调用“hook ”操作(参见效果一节),这样就只允许在这些点进行扩展。
#!/usr/bin/python
#coding:utf8
‘‘‘
Template Method
‘‘‘

ingredients = "spam eggs apple"
line = ‘-‘ * 10

# Skeletons
def iter_elements(getter, action):
    """Template skeleton that iterates items"""
    for element in getter():
        action(element)
        print(line) 

def rev_elements(getter, action):
    """Template skeleton that iterates items in reverse order"""
    for element in getter()[::-1]:
        action(element)
        print(line) 

# Getters
def get_list():
    return ingredients.split() 

def get_lists():
    return [list(x) for x in ingredients.split()] 

# Actions
def print_item(item):
    print(item) 

def reverse_item(item):
    print(item[::-1]) 

# Makes templates
def make_template(skeleton, getter, action):
    """Instantiate a template method with getter and action"""
    def template():
        skeleton(getter, action)
    return template 

# Create our template functions
templates = [make_template(s, g, a)
             for g in (get_list, get_lists)
             for a in (print_item, reverse_item)
             for s in (iter_elements, rev_elements)] 

# Execute them
for template in templates:
    template()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52

15. Chain of Responsibility(责任链)

意图:使多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系。将这些对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它为止。

适用性:

  • 有多个的对象可以处理一个请求,哪个对象处理该请求运行时刻自动确定。
  • 你想在不明确指定接收者的情况下,向多个对象中的一个提交一个请求。
  • 可处理一个请求的对象集合应被动态指定。
#!/usr/bin/python
#coding:utf8

"""
Chain
"""
class Handler:
    def successor(self, successor):
        self.successor = successor

class ConcreteHandler1(Handler):
    def handle(self, request):
        if request > 0 and request <= 10:
            print("in handler1")
        else:
            self.successor.handle(request)

class ConcreteHandler2(Handler):
    def handle(self, request):
        if request > 10 and request <= 20:
            print("in handler2")
        else:
            self.successor.handle(request)

class ConcreteHandler3(Handler):
    def handle(self, request):
        if request > 20 and request <= 30:
            print("in handler3")
        else:
            print(‘end of chain, no handler for {}‘.format(request))

class Client:
    def __init__(self):
        h1 = ConcreteHandler1()
        h2 = ConcreteHandler2()
        h3 = ConcreteHandler3()

        h1.successor(h2)
        h2.successor(h3)

        requests = [2, 5, 14, 22, 18, 3, 35, 27, 20]
        for request in requests:
            h1.handle(request)

if __name__ == "__main__":
    client = Client()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46

16. Command(命令)

意图:将一个请求封装为一个对象,从而使你可用不同的请求对客户进行参数化;对请求排队或记录请求日志,以及支持可撤消的操作。

适用性:

  • 抽象出待执行的动作以参数化某对象,你可用过程语言中的回调(call back)函数表达这种参数化机制。所谓回调函数是指函数先在某处注册,而它将在稍后某个需要的时候被调用。Command 模式是回调机制的一个面向对象的替代品。
  • 在不同的时刻指定、排列和执行请求。一个Command对象可以有一个与初始请求无关的生存期。如果一个请求的接收者可用一种与地址空间无关的方式表达,那么就可将负责该请求的命令对象传送给另一个不同的进程并在那儿实现该请求。
  • 支持取消操作。Command的Excute 操作可在实施操作前将状态存储起来,在取消操作时这个状态用来消除该操作的影响。Command 接口必须添加一个Unexecute操作,该操作取消上一次Execute调用的效果。执行的命令被存储在一个历史列表中。可通过向后和向前遍历这一列表并分别调用Unexecute和Execute来实现重数不限的“取消”和“重做”。
  • 支持修改日志,这样当系统崩溃时,这些修改可以被重做一遍。在Command接口中添加装载操作和存储操作,可以用来保持变动的一个一致的修改日志。从崩溃中恢复的过程包括从磁盘中重新读入记录下来的命令并用Execute操作重新执行它们。
  • 用构建在原语操作上的高层操作构造一个系统。这样一种结构在支持事务( transaction)的信息系统中很常见。一个事务封装了对数据的一组变动。Command模式提供了对事务进行建模的方法。Command有一个公共的接口,使得你可以用同一种方式调用所有的事务。同时使用该模式也易于添加新事务以扩展系统。
#!/usr/bin/python
#coding:utf8

"""
Command
"""
import os

class MoveFileCommand(object):
    def __init__(self, src, dest):
        self.src = src
        self.dest = dest

    def execute(self):
        self()

    def __call__(self):
        print(‘renaming {} to {}‘.format(self.src, self.dest))
        os.rename(self.src, self.dest)

    def undo(self):
        print(‘renaming {} to {}‘.format(self.dest, self.src))
        os.rename(self.dest, self.src)

if __name__ == "__main__":
    command_stack = []

    # commands are just pushed into the command stack
    command_stack.append(MoveFileCommand(‘foo.txt‘, ‘bar.txt‘))
    command_stack.append(MoveFileCommand(‘bar.txt‘, ‘baz.txt‘))

    # they can be executed later on
    for cmd in command_stack:
        cmd.execute()

    # and can also be undone at will
    for cmd in reversed(command_stack):
        cmd.undo()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39

17. Iterator(迭代器)

意图:提供一种方法顺序访问一个聚合对象中各个元素, 而又不需暴露该对象的内部表示。

适用性:

  • 访问一个聚合对象的内容而无需暴露它的内部表示。
  • 支持对聚合对象的多种遍历。
  • 为遍历不同的聚合结构提供一个统一的接口(即, 支持多态迭代)。
#!/usr/bin/python
#coding:utf8
‘‘‘
Interator
‘‘‘
def count_to(count):
    """Counts by word numbers, up to a maximum of five"""
    numbers = ["one", "two", "three", "four", "five"]
    # enumerate() returns a tuple containing a count (from start which
    # defaults to 0) and the values obtained from iterating over sequence
    for pos, number in zip(range(count), numbers):
        yield number

# Test the generator
count_to_two = lambda: count_to(2)
count_to_five = lambda: count_to(5)

print(‘Counting to two...‘)
for number in count_to_two():
    print number

print " "

print(‘Counting to five...‘)
for number in count_to_five():
    print number

print " "
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

18. Mediator(中介者)

意图:用一个中介对象来封装一系列的对象交互。中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。

适用性:

  • 一组对象以定义良好但是复杂的方式进行通信。产生的相互依赖关系结构混乱且难以理解。
  • 一个对象引用其他很多对象并且直接与这些对象通信,导致难以复用该对象。
  • 想定制一个分布在多个类中的行为,而又不想生成太多的子类。
#!/usr/bin/python
#coding:utf8
‘‘‘
Mediator
‘‘‘
"""http://dpip.testingperspective.com/?p=28"""

import time

class TC:
    def __init__(self):
        self._tm = tm
        self._bProblem = 0

    def setup(self):
        print("Setting up the Test")
        time.sleep(1)
        self._tm.prepareReporting()

    def execute(self):
        if not self._bProblem:
            print("Executing the test")
            time.sleep(1)
        else:
            print("Problem in setup. Test not executed.")

    def tearDown(self):
        if not self._bProblem:
            print("Tearing down")
            time.sleep(1)
            self._tm.publishReport()
        else:
            print("Test not executed. No tear down required.")

    def setTM(self, TM):
        self._tm = tm

    def setProblem(self, value):
        self._bProblem = value

class Reporter:
    def __init__(self):
        self._tm = None

    def prepare(self):
        print("Reporter Class is preparing to report the results")
        time.sleep(1)

    def report(self):
        print("Reporting the results of Test")
        time.sleep(1)

    def setTM(self, TM):
        self._tm = tm

class DB:
    def __init__(self):
        self._tm = None

    def insert(self):
        print("Inserting the execution begin status in the Database")
        time.sleep(1)
        #Following code is to simulate a communication from DB to TC
        import random
        if random.randrange(1, 4) == 3:
            return -1

    def update(self):
        print("Updating the test results in Database")
        time.sleep(1)

    def setTM(self, TM):
        self._tm = tm

class TestManager:
    def __init__(self):
        self._reporter = None
        self._db = None
        self._tc = None

    def prepareReporting(self):
        rvalue = self._db.insert()
        if rvalue == -1:
            self._tc.setProblem(1)
            self._reporter.prepare()

    def setReporter(self, reporter):
        self._reporter = reporter

    def setDB(self, db):
        self._db = db

    def publishReport(self):
        self._db.update()
        rvalue = self._reporter.report()

    def setTC(self, tc):
        self._tc = tc

if __name__ == ‘__main__‘:
    reporter = Reporter()
    db = DB()
    tm = TestManager()
    tm.setReporter(reporter)
    tm.setDB(db)
    reporter.setTM(tm)
    db.setTM(tm)
    # For simplification we are looping on the same test.
    # Practically, it could be about various unique test classes and their
    # objects
    while (True):
        tc = TC()
        tc.setTM(tm)
        tm.setTC(tc)
        tc.setup()
        tc.execute()
        tc.tearDown()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118

19. Memento(备忘录)

意图:在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态。这样以后就可将该对象恢复到原先保存的状态。

适用性:

  • 必须保存一个对象在某一个时刻的(部分)状态, 这样以后需要时它才能恢复到先前的状态。
  • 如果一个用接口来让其它对象直接得到这些状态,将会暴露对象的实现细节并破坏对象的封装性。
#!/usr/bin/python
#coding:utf8
‘‘‘
Memento
‘‘‘

import copy

def Memento(obj, deep=False):
    state = (copy.copy, copy.deepcopy)[bool(deep)](obj.__dict__)

    def Restore():
        obj.__dict__.clear()
        obj.__dict__.update(state)
    return Restore

class Transaction:
    """A transaction guard. This is really just
      syntactic suggar arount a memento closure.
      """
    deep = False

    def __init__(self, *targets):
        self.targets = targets
        self.Commit()

    def Commit(self):
        self.states = [Memento(target, self.deep) for target in self.targets]

    def Rollback(self):
        for st in self.states:
            st()

class transactional(object):
    """Adds transactional semantics to methods. Methods decorated  with
    @transactional will rollback to entry state upon exceptions.
    """
    def __init__(self, method):
        self.method = method

    def __get__(self, obj, T):
        def transaction(*args, **kwargs):
            state = Memento(obj)
            try:
                return self.method(obj, *args, **kwargs)
            except:
                state()
                raise
        return transaction

class NumObj(object):
    def __init__(self, value):
        self.value = value

    def __repr__(self):
        return ‘<%s: %r>‘ % (self.__class__.__name__, self.value)

    def Increment(self):
        self.value += 1

    @transactional
    def DoStuff(self):
        self.value = ‘1111‘  # <- invalid value
        self.Increment()     # <- will fail and rollback

if __name__ == ‘__main__‘:
    n = NumObj(-1)
    print(n)
    t = Transaction(n)
    try:
        for i in range(3):
            n.Increment()
            print(n)
        t.Commit()
        print(‘-- commited‘)
        for i in range(3):
            n.Increment()
            print(n)
        n.value += ‘x‘  # will fail
        print(n)
    except:
        t.Rollback()
        print(‘-- rolled back‘)
    print(n)
    print(‘-- now doing stuff ...‘)
    try:
        n.DoStuff()
    except:
        print(‘-> doing stuff failed!‘)
        import traceback
        traceback.print_exc(0)
        pass
    print(n)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93

20. Observer(观察者)

意图:定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时, 所有依赖于它的对象都得到通知并被自动更新。

适用性:

  • 当一个抽象模型有两个方面, 其中一个方面依赖于另一方面。将这二者封装在独立的对象中以使它们可以各自独立地改变和复用。
  • 当对一个对象的改变需要同时改变其它对象, 而不知道具体有多少对象有待改变。
  • 当一个对象必须通知其它对象,而它又不能假定其它对象是谁。换言之, 你不希望这些对象是紧密耦合的。
#!/usr/bin/python
#coding:utf8
‘‘‘
Observer
‘‘‘

class Subject(object):
    def __init__(self):
        self._observers = []

    def attach(self, observer):
        if not observer in self._observers:
            self._observers.append(observer)

    def detach(self, observer):
        try:
            self._observers.remove(observer)
        except ValueError:
            pass

    def notify(self, modifier=None):
        for observer in self._observers:
            if modifier != observer:
                observer.update(self)

# Example usage
class Data(Subject):
    def __init__(self, name=‘‘):
        Subject.__init__(self)
        self.name = name
        self._data = 0

    @property
    def data(self):
        return self._data

    @data.setter
    def data(self, value):
        self._data = value
        self.notify()

class HexViewer:
    def update(self, subject):
        print(‘HexViewer: Subject %s has data 0x%x‘ %
              (subject.name, subject.data))

class DecimalViewer:
    def update(self, subject):
        print(‘DecimalViewer: Subject %s has data %d‘ %
              (subject.name, subject.data))

# Example usage...
def main():
    data1 = Data(‘Data 1‘)
    data2 = Data(‘Data 2‘)
    view1 = DecimalViewer()
    view2 = HexViewer()
    data1.attach(view1)
    data1.attach(view2)
    data2.attach(view2)
    data2.attach(view1)

    print("Setting Data 1 = 10")
    data1.data = 10
    print("Setting Data 2 = 15")
    data2.data = 15
    print("Setting Data 1 = 3")
    data1.data = 3
    print("Setting Data 2 = 5")
    data2.data = 5
    print("Detach HexViewer from data1 and data2.")
    data1.detach(view2)
    data2.detach(view2)
    print("Setting Data 1 = 10")
    data1.data = 10
    print("Setting Data 2 = 15")
    data2.data = 15

if __name__ == ‘__main__‘:
    main()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81

21. State(状态)

意图:允许一个对象在其内部状态改变时改变它的行为。对象看起来似乎修改了它的类。

适用性:

  • 一个对象的行为取决于它的状态, 并且它必须在运行时刻根据状态改变它的行为。
  • 一个操作中含有庞大的多分支的条件语句,且这些分支依赖于该对象的状态。这个状态通常用一个或多个枚举常量表示。通常, 有多个操作包含这一相同的条件结构。State模式将每一个条件分支放入一个独立的类中。这使得你可以根据对象自身的情况将对象的状态作为一个对象,这一对象可以不依赖于其他对象而独立变化。
#!/usr/bin/python
#coding:utf8
‘‘‘
State
‘‘‘

class State(object):
    """Base state. This is to share functionality"""

    def scan(self):
        """Scan the dial to the next station"""
        self.pos += 1
        if self.pos == len(self.stations):
            self.pos = 0
        print("Scanning... Station is", self.stations[self.pos], self.name)

class AmState(State):
    def __init__(self, radio):
        self.radio = radio
        self.stations = ["1250", "1380", "1510"]
        self.pos = 0
        self.name = "AM"

    def toggle_amfm(self):
        print("Switching to FM")
        self.radio.state = self.radio.fmstate

class FmState(State):
    def __init__(self, radio):
        self.radio = radio
        self.stations = ["81.3", "89.1", "103.9"]
        self.pos = 0
        self.name = "FM"

    def toggle_amfm(self):
        print("Switching to AM")
        self.radio.state = self.radio.amstate

class Radio(object):
    """A radio.     It has a scan button, and an AM/FM toggle switch."""
    def __init__(self):
        """We have an AM state and an FM state"""
        self.amstate = AmState(self)
        self.fmstate = FmState(self)
        self.state = self.amstate

    def toggle_amfm(self):
        self.state.toggle_amfm()

    def scan(self):
        self.state.scan()

# Test our radio out
if __name__ == ‘__main__‘:
    radio = Radio()
    actions = [radio.scan] * 2 + [radio.toggle_amfm] + [radio.scan] * 2
    actions = actions * 2

    for action in actions:
        action()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61

22. Strategy(策略)

意图:定义一系列的算法,把它们一个个封装起来, 并且使它们可相互替换。本模式使得算法可独立于使用它的客户而变化。

适用性:

  • 许多相关的类仅仅是行为有异。“策略”提供了一种用多个行为中的一个行为来配置一个类的方法。
  • 需要使用一个算法的不同变体。例如,你可能会定义一些反映不同的空间/时间权衡的算法。当这些变体实现为一个算法的类层次时[H087] ,可以使用策略模式。
  • 算法使用客户不应该知道的数据。可使用策略模式以避免暴露复杂的、与算法相关的数据结构。
  • 一个类定义了多种行为, 并且这些行为在这个类的操作中以多个条件语句的形式出现。将相关的条件分支移入它们各自的Strategy类中以代替这些条件语句。
#!/usr/bin/python
#coding:utf8
"""
Strategy
In most of other languages Strategy pattern is implemented via creating some base strategy interface/abstract class and
subclassing it with a number of concrete strategies (as we can see at http://en.wikipedia.org/wiki/Strategy_pattern),
however Python supports higher-order functions and allows us to have only one class and inject functions into it‘s
instances, as shown in this example.
"""
import types

class StrategyExample:
    def __init__(self, func=None):
        self.name = ‘Strategy Example 0‘
        if func is not None:
            self.execute = types.MethodType(func, self)     

    def execute(self):
        print(self.name)  

def execute_replacement1(self):
    print(self.name + ‘ from execute 1‘)  

def execute_replacement2(self):
    print(self.name + ‘ from execute 2‘) 

if __name__ == ‘__main__‘:
    strat0 = StrategyExample()    

    strat1 = StrategyExample(execute_replacement1)
    strat1.name = ‘Strategy Example 1‘    

    strat2 = StrategyExample(execute_replacement2)
    strat2.name = ‘Strategy Example 2‘

    strat0.execute()
    strat1.execute()
    strat2.execute()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39

23. Visitor(访问者)

意图:定义一个操作中的算法的骨架,而将一些步骤延迟到子类中。TemplateMethod 使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。

适用性:

  • 一次性实现一个算法的不变的部分,并将可变的行为留给子类来实现。
  • 各子类中公共的行为应被提取出来并集中到一个公共父类中以避免代码重复。这是Opdyke和Johnson所描述过的“重分解以一般化”的一个很好的例子[OJ93]。首先识别现有代码中的不同之处,并且将不同之处分离为新的操作。最后,用一个调用这些新的操作的模板方法来替换这些不同的代码。
  • 控制子类扩展。模板方法只在特定点调用“hook ”操作(参见效果一节),这样就只允许在这些点进行扩展。
#!/usr/bin/python
#coding:utf8
‘‘‘
Visitor
‘‘‘
class Node(object):
    pass

class A(Node):
    pass

class B(Node):
    pass

class C(A, B):
    pass

class Visitor(object):
    def visit(self, node, *args, **kwargs):
        meth = None
        for cls in node.__class__.__mro__:
            meth_name = ‘visit_‘+cls.__name__
            meth = getattr(self, meth_name, None)
            if meth:
                break

        if not meth:
            meth = self.generic_visit
        return meth(node, *args, **kwargs)

    def generic_visit(self, node, *args, **kwargs):
        print(‘generic_visit ‘+node.__class__.__name__)

    def visit_B(self, node, *args, **kwargs):
        print(‘visit_B ‘+node.__class__.__name__)

a = A()
b = B()
c = C()

visitor = Visitor()
visitor.visit(a)
visitor.visit(b)
visitor.visit(c)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44

参考文章

https://www.cnblogs.com/Liqiongyu/p/5916710.html

原文地址:https://www.cnblogs.com/mac1993/p/9300924.html

时间: 2024-10-09 11:48:28

Python设计模式(4):行为型的相关文章

(转自精通Python设计模式)Python设计模式之创建型模式——1.工厂模式

在工厂设计模式中,客户端可以请求一个对象,而无需知道这个对象来自哪里:也就是,使用哪个类类生成这个对象.工厂背后的思想是简化对象的创建.与客户端自己基于类实例化直接创建对象相比,基于一个中心化函数来实现,更易于追踪创建了哪些对象.通过将创建对象的代码和使用对象的代码解耦,工厂能够降低应用维护的复杂度. 工厂通常有两种形式:一种是工厂方法,它是一个方法(或是一个函数),对不同的输入参数返回不同的对象:第二种是抽象工厂,它是一组创建一系列相关事物对象的工厂方法. 1. 工厂方法 在工厂方法模式中,我

PYTHON设计模式,创建型之工厂方法模式

我感觉和上一个差不多,可能不要动最要的地方吧... #!/usr/bin/evn python #coding:utf8 class Pizza(object): def prepare(self, type): print 'prepare {type} pizza'.format(type=type) def bake(self, type): print 'bake {type} pizza'.format(type=type) def cut(self, type): print 'cu

PYTHON设计模式,创建型之简单工厂模式

这个系统,感觉思路清爽,,相信多练练,多思考,就会熟悉的.. http://www.jianshu.com/p/2450b785c329 #!/usr/bin/evn python #coding:utf8 class Pizza(object): def prepare(self, type): print 'prepare {type} pizza'.format(type=type) def bake(self, type): print 'bake {type} pizza'.forma

Python设计模式(3):结构型

承接Python设计模式(2):创建型 6. Adapter Class/Object(适配器) 意图:将一个类的接口转换成客户希望的另外一个接口.Adapter 模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作. 适用性: 你想使用一个已经存在的类,而它的接口不符合你的需求. 你想创建一个可以复用的类,该类可以与其他不相关的类或不可预见的类(即那些接口可能不一定兼容的类)协同工作. (仅适用于对象Adapter )你想使用一些已经存在的子类,但是不可能对每一个都进行子类化以匹配它们

设计模式3 创建型模型

设计模式3 创建型模型 目录: 简单工厂模式 工厂方法模式 抽象工厂模式 单例模式 简单工厂 模型 [email protected]:~$ cat main.cpp  //设计模式:简单工厂 模型 #include<iostream> using namespace std; class Fruit { public: Fruit(string kind) { this->kind = kind; if(kind == "apple") {} else if (ki

设计模式之创建型模式(上)

没有总结的学习不算学习,这一个月的学习可谓收获多多啊,接下来与大家分享一下. 一.设计模式的分类 总体来说设计模式分为三大类: 1.创建型模式,共五种. 2.结构型模式,共七种. 3.行为型模式,共十一种. 首先研究创建型模式 二. 概述 创建型模式,就是用来创建对象的模式,抽象了实例化的过程.它帮助一个系统独 立于如何创建.组合和表示它的那些对象. 三. 为什么需要创建型模式 所有的创建型模式都有两个永恒的主旋律: 第一,它们都将系统使用哪些具体类的信息封装起来: 第二,它们隐藏了这些类的实例

Python设计模式——设计原则

1.单一职责原则:每个类都只有一个职责,修改一个类的理由只有一个 2.开放-封闭远程(OCP):开放是指可拓展性好,封闭是指一旦一个类写好了,就尽量不要修改里面的代码,通过拓展(继承,重写等)来使旧的类满足新的需求,而不是修改一个类里面的代码. 3.依赖倒转原则:高层模块不应该依赖底层模块,两个都应该依赖抽象:抽象不应该依赖细节,细节应该依赖抽象.底层模块例如很多工具类,例如专门用于管理sql连接的类,管理文件,管理socket连接的类,高层类指具体实现需求的类.高层类和底层类都不应该相互依赖,

Python设计模式——工厂方法模式(FactoryMethod)

需求:有一个学雷锋活动,有买米和扫地两个内容,参与的人有大学生和社区志愿者,他们各自的方法不一样. 如果用简单工厂模式实现: #encoding=utf-8 __author__ = '[email protected]' class LeiFeng(): def buy_rice(self): pass def sweep(self): pass class Student(LeiFeng): def buy_rice(self): print '大学生帮你买米' def sweep(self

Java经典23种设计模式之行为型模式(三)

本文接着介绍11种行为型模式里的备忘录模式.观察者模式.状态模式. 一.备忘录模式 在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态.这样以后就可以将该对象恢复到原先保存的状态.还是比较好理解的. 1.Memento 备忘录存储原发器对象的内部状态,这个类就是要存储的对象的状态.状态需要多少个变量,在Memento里就写多少个变量. public class Memento { private String state; public Meme*to(String st