JDK1.7中HashMap底层实现原理

一、数据结构

HashMap中的数据结构是数组+单链表的组合,以键值对(key-value)的形式存储元素的,通过put()和get()方法储存和获取对象。

(方块表示Entry对象,横排表示数组table[],纵排表示哈希桶bucket【实际上是一个由Entry组成的链表,新加入的Entry放在链头,最先加入的放在链尾】,)

二、实现原理

成员变量

源码分析:

    /** 初始容量,默认16 */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /** 最大初始容量,2^30 */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /** 负载因子,默认0.75,负载因子越小,hash冲突机率越低 */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /** 初始化一个Entry的空数组 */
    static final Entry<?,?>[] EMPTY_TABLE = {};

    /** 将初始化好的空数组赋值给table,table数组是HashMap实际存储数据的地方,并不在EMPTY_TABLE数组中 */
    transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

    /** HashMap实际存储的元素个数 */
    transient int size;

    /** 临界值(HashMap 实际能存储的大小),公式为(threshold = capacity * loadFactor) */
    int threshold;

    /** 负载因子 */
    final float loadFactor;

    /** HashMap的结构被修改的次数,用于迭代器 */
    transient int modCount;

构造方法

源码分析:

    public HashMap(int initialCapacity, float loadFactor) {
        // 判断设置的容量和负载因子合不合理
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        // 设置负载因子,临界值此时为容量大小,后面第一次put时由inflateTable(int toSize)方法计算设置
        this.loadFactor = loadFactor;
        threshold = initialCapacity;
        init();
    }

    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    public HashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
    }

    public HashMap(Map<? extends K, ? extends V> m) {
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                      DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
        inflateTable(threshold);
        putAllForCreate(m);
    }

put方法

put()源码分析:

public V put(K key, V value) {
    // 如果table引用指向成员变量EMPTY_TABLE,那么初始化HashMap(设置容量、临界值,新的Entry数组引用)
    if (table == EMPTY_TABLE) {
        inflateTable(threshold);
    }
    // 若“key为null”,则将该键值对添加到table[0]处,遍历该链表,如果有key为null,则将value替换。没有就创建新Entry对象放在链表表头
    // 所以table[0]的位置上,永远最多存储1个Entry对象,形成不了链表。key为null的Entry存在这里
    if (key == null)
        return putForNullKey(value);
    // 若“key不为null”,则计算该key的哈希值
    int hash = hash(key);
    // 搜索指定hash值在对应table中的索引
    int i = indexFor(hash, table.length);
    // 循环遍历table数组上的Entry对象,判断该位置上key是否已存在
    for (Entry<K,V> e = table[i]; e != null; e = e.next) {
        Object k;
        // 哈希值相同并且对象相同
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
            // 如果这个key对应的键值对已经存在,就用新的value代替老的value,然后退出!
            V oldValue = e.value;
            e.value = value;
            e.recordAccess(this);
            return oldValue;
        }
    }
    // 修改次数+1
    modCount++;
    // table数组中没有key对应的键值对,就将key-value添加到table[i]处
    addEntry(hash, key, value, i);
    return null;
}  

可以看到,当我们给put()方法传递键和值时,HashMap会由key来调用hash()方法,返回键的hash值,计算Index后用于找到bucket(哈希桶)的位置来储存Entry对象。

如果两个对象key的hash值相同,那么它们的bucket位置也相同,但equals()不相同,添加元素时会发生hash碰撞,也叫hash冲突,HashMap使用链表来解决碰撞问题。

分析源码可知,put()时,HashMap会先遍历table数组,用hash值和equals()判断数组中是否存在完全相同的key对象, 如果这个key对象在table数组中已经存在,就用新的value代替老的value。如果不存在,就创建一个新的Entry对象添加到table[ i ]处。

如果该table[ i ]已经存在其他元素,那么新Entry对象将会储存在bucket链表的表头,通过next指向原有的Entry对象,形成链表结构(hash碰撞解决方案)。

Entry数据结构源码如下(HashMap内部类):

 static class Entry<K,V> implements Map.Entry<K,V> {
        final K key;
        V value;
        /** 指向下一个元素的引用 */
        Entry<K,V> next;
        int hash;

        /**
         * 构造方法为Entry赋值
         */
        Entry(int h, K k, V v, Entry<K,V> n) {
            value = v;
            next = n;
            key = k;
            hash = h;
        }
        ...
        ...
 } 

形成单链表的核心代码如下:

    /**
     * 将Entry添加到数组bucketIndex位置对应的哈希桶中,并判断数组是否需要扩容
     */
    void addEntry(int hash, K key, V value, int bucketIndex) {
        // 如果数组长度大于等于容量×负载因子,并且要添加的位置为null
        if ((size >= threshold) && (null != table[bucketIndex])) {
            // 长度扩大为原数组的两倍,代码分析见下面扩容机制
            resize(2 * table.length);
            hash = (null != key) ? hash(key) : 0;
            bucketIndex = indexFor(hash, table.length);
        }
        createEntry(hash, key, value, bucketIndex);
    }

    /**
     * 在链表中添加一个新的Entry对象在链表的表头
     */
    void createEntry(int hash, K key, V value, int bucketIndex) {
        Entry<K,V> e = table[bucketIndex];
        table[bucketIndex] = new Entry<>(hash, key, value, e);
        size++;
    }

(put方法执行过程)

get方法

如果两个不同的key的hashcode相同,两个值对象储存在同一个bucket位置,要获取value,我们调用get()方法,HashMap会使用key的hashcode找到bucket位置,因为HashMap在链表中存储的是Entry键值对,所以找到bucket位置之后,会调用key的equals()方法,按顺序遍历链表的每个 Entry,直到找到想获取的 Entry 为止——如果恰好要搜索的 Entry 位于该 Entry 链的最末端(该 Entry 是最早放入该 bucket 中),那HashMap必须循环到最后才能找到该元素。

get()方法源码如下:

    public V get(Object key) {
        // 若key为null,遍历table[0]处的链表(实际上要么没有元素,要么只有一个Entry对象),取出key为null的value
        if (key == null)
            return getForNullKey();
        // 若key不为null,用key获取Entry对象
        Entry<K,V> entry = getEntry(key);
        // 若链表中找到的Entry不为null,返回该Entry中的value
        return null == entry ? null : entry.getValue();
    }

    final Entry<K,V> getEntry(Object key) {
        if (size == 0) {
            return null;
        }
        // 计算key的hash值
        int hash = (key == null) ? 0 : hash(key);
        // 计算key在数组中对应位置,遍历该位置的链表
        for (Entry<K,V> e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            // 若key完全相同,返回链表中对应的Entry对象
            if (e.hash == hash &&
                ((k = e.key) == key || (key != null && key.equals(k))))
                return e;
        }
        // 链表中没找到对应的key,返回null
        return null;
    }

三、hash算法

我们可以看到在HashMap中要找到某个元素,需要根据key的hash值来求得对应数组中的位置。如何计算这个位置就是hash算法。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的元素位置尽量的分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,而不用再去遍历链表。

源码分析:

    /**
     * Returns index for hash code h.
     */
    static int indexFor(int h, int length) {
        // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
        return h & (length-1);
    }

四、性能问题

HashMap有两个参数影响其性能:初始容量和负载因子。均可以通过构造方法指定大小。

容量capacity是HashMap中bucket哈希桶(Entry的链表)的数量,初始容量只是HashMap在创建时的容量,最大设置初始容量是2^30,默认初始容量是16(必须为2的幂),解释一下,当数组长度为2的n次幂的时候,不同的key通过indexFor()方法算得的数组位置相同的几率较小,那么数据在数组上分布就比较均匀,也就是说碰撞的几率小,相对的,get()的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。

负载因子loadFactor是HashMap在其容量自动增加之前可以达到多满的一种尺度,默认值是0.75。

扩容机制:

当HashMapde的长度超出了加载因子与当前容量的乘积(默认16*0.75=12)时,通过调用resize方法重新创建一个原来HashMap大小的两倍的newTable数组,最大扩容到2^30+1,并将原先table的元素全部移到newTable里面,重新计算hash,然后再重新根据hash分配位置。这个过程叫作rehash,因为它调用hash方法找到新的bucket位置。

扩容机制源码分析:

    void resize(int newCapacity) {
        Entry[] oldTable = table;
        int oldCapacity = oldTable.length;
        // 如果之前的HashMap已经扩充打最大了,那么就将临界值threshold设置为最大的int值
        if (oldCapacity == MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return;
        }

        // 根据新传入的newCapacity创建新Entry数组
        Entry[] newTable = new Entry[newCapacity];
        // 用来将原先table的元素全部移到newTable里面,重新计算hash,然后再重新根据hash分配位置
        transfer(newTable, initHashSeedAsNeeded(newCapacity));
        // 再将newTable赋值给table
        table = newTable;
        // 重新计算临界值,扩容公式在这儿(newCapacity * loadFactor)
        threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
    }

    void transfer(Entry[] newTable, boolean rehash) {
        int newCapacity = newTable.length;
        for (Entry<K,V> e : table) {
            while(null != e) {
                Entry<K,V> next = e.next;
                if (rehash) {
                    e.hash = null == e.key ? 0 : hash(e.key);
                }
                int i = indexFor(e.hash, newCapacity);
                e.next = newTable[i];
                newTable[i] = e;
                e = next;
            }
        }
    }

扩容问题:

数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这个操作是极其消耗性能的。所以如果我们已经预知HashMap中元素的个数,那么预设初始容量能够有效的提高HashMap的性能。

重新调整HashMap大小,当多线程的情况下可能产生条件竞争。因为如果两个线程都发现HashMap需要重新调整大小了,它们会同时试着调整大小。在调整大小的过程中,存储在链表中的元素的次序会反过来,因为移动到新的bucket位置的时候,HashMap并不会将元素放在链表的尾部,而是放在头部,这是为了避免尾部遍历(tail traversing)。如果条件竞争发生了,那么就死循环了。

五、线程安全

HashMap是线程不安全的,在多线程情况下直接使用HashMap会出现一些莫名其妙不可预知的问题。在多线程下使用HashMap,有几种方案:

A.在外部包装HashMap,实现同步机制

B.使用Map m = Collections.synchronizedMap(new HashMap(...));实现同步(官方参考方案,但不建议使用,使用迭代器遍历的时候修改映射结构容易出错)

D.使用java.util.HashTable,效率最低(几乎被淘汰了)

E.使用java.util.concurrent.ConcurrentHashMap,相对安全,效率高(建议使用)

注意一个小问题,HashMap所有集合类视图所返回迭代器都是快速失败的(fail-fast),在迭代器创建之后,如果从结构上对映射进行修改,除非通过迭代器自身的 remove 或 add 方法,其他任何时间任何方式的修改,迭代器都将抛出 ConcurrentModificationException。。因此,面对并发的修改,迭代器很快就会完全失败。

六、关于JDK1.8的问题

JDK1.8的HashMap源码实现和1.7是不一样的,有很大不同,其底层数据结构也不一样,引入了红黑树结构。有网友测试过,JDK1.8HashMap的性能要高于JDK1.7 15%以上,在某些size的区域上,甚至高于100%。随着size的变大,JDK1.7的花费时间是增长的趋势,而JDK1.8是明显的降低趋势,并且呈现对数增长稳定。当一个链表长度大于8的时候,HashMap会动态的将它替换成一个红黑树(JDK1.8引入红黑树大程度优化了HashMap的性能),这会将时间复杂度从O(n)降为O(logn)。

原文地址:https://www.cnblogs.com/jiawen010/p/11847774.html

时间: 2024-10-07 16:10:32

JDK1.7中HashMap底层实现原理的相关文章

Java中HashMap底层实现原理(JDK1.8)源码分析

这几天学习了HashMap的底层实现,但是发现好几个版本的,代码不一,而且看了Android包的HashMap和JDK中的HashMap的也不是一样,原来他们没有指定JDK版本,很多文章都是旧版本JDK1.6.JDK1.7的.现在我来分析一哈最新的JDK1.8的HashMap及性能优化. 在JDK1.6,JDK1.7中,HashMap采用位桶+链表实现,即使用链表处理冲突,同一hash值的链表都存储在一个链表里.但是当位于一个桶中的元素较多,即hash值相等的元素较多时,通过key值依次查找的效

Java面试必问之Hashmap底层实现原理(JDK1.8)

1. 前言 上一篇从源码方面了解了JDK1.7中Hashmap的实现原理,可以看到其源码相对还是比较简单的.本篇笔者和大家一起学习下JDK1.8下Hashmap的实现.JDK1.8中对Hashmap做了以下改动. 默认初始化容量=0 引入红黑树,优化数据结构 将链表头插法改为尾插法,解决1.7中多线程循环链表的bug 优化hash算法 resize计算索引位置的算法改进 先插入后扩容 2. Hashmap中put()过程 笔者的源码是OpenJDK1.8的源码. JDK1.8中,Hashmap将

JDK1.8中HashMap实现

JDK1.8中的HashMap实现跟JDK1.7中的实现有很大差别.下面分析JDK1.8中的实现,主要看put和get方法. 构造方法的时候并没有初始化,而是在第一次put的时候初始化 putVal方法的主要逻辑是这样的: 1.如果数组还没有初始化(数组长度是0),则先初始化 2.通过hash方法计算key的hash值,进而计算得到应该放置到数组的位置 3.如果该位置为空,则直接放置此处 4.如果该位置不为空,而且元素是红黑树,则插入到其中 5.如果是链表,则遍历链表,如果找到相等的元素则替换,

Java中HashMap的实现原理

最近面试中被问及Java中HashMap的原理,瞬间无言以对,因此痛定思痛觉得研究一番. 一.Java中的hashCode和equals 1.关于hashCode hashCode的存在主要是用于查找的快捷性,如Hashtable,HashMap等,hashCode是用来在散列存储结构中确定对象的存储地址的 如果两个对象相同,就是适用于equals(java.lang.Object) 方法,那么这两个对象的hashCode一定要相同 如果对象的equals方法被重写,那么对象的hashCode也

jdk1.8中hashmap

1.在jdk1.8以前,hashmap的实现原理是数组+链表,在1.8以后实现就变成了数组+链表+红黑树.这样实现的好处是防止某个链表中的元素数量过多,导致hashmap的整体性能下降,所以在1.8以后改为当链表中的元数量大于8时,就把链表改成红黑树,以提高效率.在红黑树中元素的数量小于6时,就会变成链表. 2.关于hashmap的put()的具体实现如下: final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolea

面试必问:HashMap 底层实现原理

HashMap是在面试中经常会问的一点,很多时候我们仅仅只是知道HashMap他是允许键值对都是Null,并且是非线程安全的,如果在多线程的环境下使用,是很容易出现问题的. 这是我们通常在面试中会说的,但是有时候问到底层的源码分析的时候,为什么允许为Null,为什么不安全,这些问题的时候,如果没有分析过源码的话,好像很难回答, 这样的话我们来研究一下这个源码.看看原因吧. HashMap最早出现在JDK1.2中,它的底层是基于的散列算法.允许键值对都是Null,并且是非线程安全的,我们先看看这个

HashMap底层实现原理/HashMap与HashTable区别/HashMap与HashSet区别

Hash算法 Hash,一般翻译做"散列",也有直接音译为"哈希"的,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值.这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值.简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数. HASH主要用于信息安全领域中加密算法,它把一些不同长度的信息转化成杂乱的128

HashMap底层实现原理以及HashMap与HashTable区别以及HashMap与HashSet区别

①HashMap的工作原理 HashMap基于hashing原理,我们通过put()和get()方法储存和获取对象.当我们将键值对传递给put()方法时,它调用键对象的hashCode()方法来计算hashcode,让后找到bucket位置来储存值对象.当获取对象时,通过键对象的equals()方法找到正确的键值对,然后返回值对象.HashMap使用链表来解决碰撞问题,当发生碰撞了,对象将会储存在链表的下一个节点中. HashMap在每个链表节点中储存键值对对象. 当两个不同的键对象的hashc

(转)HashMap底层实现原理

①HashMap的工作原理 HashMap基于hashing原理,我们通过put()和get()方法储存和获取对象.当我们将键值对传递给put()方法时,它调用键对象的hashCode()方法来计算hashcode,让后找到bucket位置来储存值对象.当获取对象时,通过键对象的equals()方法找到正确的键值对,然后返回值对象.HashMap使用链表来解决碰撞问题,当发生碰撞了,对象将会储存在链表的下一个节点中. HashMap在每个链表节点中储存键值对对象. 当两个不同的键对象的hashc