mysql 索引中的USING BTREE有什么用

创建索引时使用的索引方式,有btree和hash两种

CREATE [UNIQUE | FULLTEXT | SPATIAL] INDEX index_name
    [index_type]
    ON tbl_name (key_part,...)
    [index_option]
    [algorithm_option | lock_option] ...

key_part:
    col_name [(length)] [ASC | DESC]

index_option:
    KEY_BLOCK_SIZE [=] value
  | index_type
  | WITH PARSER parser_name
  | COMMENT ‘string‘

index_type:
    USING {BTREE | HASH}

algorithm_option:
    ALGORITHM [=] {DEFAULT | INPLACE | COPY}

lock_option:
    LOCK [=] {DEFAULT | NONE | SHARED | EXCLUSIVE}

一些存储引擎允许您在创建索引时指定索引类型。例如:

CREATE TABLE lookup (id INT) ENGINE = MEMORY;
CREATE INDEX id_index ON lookup (id) USING BTREE;

B-TREE索引的特点

B-TREEB-TREE以B+树结构存储数据,大大加快了数据的查询速度
B-TREE索引在范围查找的SQL语句中更加适合(顺序存储)
B-TREE索引使用场景

全值匹配的查询SQL,如 where act_id= ‘1111_act‘
联合索引汇中匹配到最左前缀查询,如联合索引 KEY idx_actid_name(act_id,act_name) USING BTREE,只要条件中使用到了联合索引的第一列,就会用到该索引,但如果查询使用到的是联合索引的第二列act_name,该SQL则便无法使用到该联合索引(注:覆盖索引除外)
匹配模糊查询的前匹配,如where act_name like ‘11_act%‘
匹配范围值的SQL查询,如where act_date > ‘9865123547215‘(not in和<>无法使用索引)
覆盖索引的SQL查询,就是说select出来的字段都建立了索引

HASH索引的特点

Hash索引基于Hash表实现,只有查询条件精确匹配Hash索引中的所有列才会用到hash索引
存储引擎会为Hash索引中的每一列都计算hash码,Hash索引中存储的即hash码,所以每次读取都会进行两次查询
Hash索引无法用于排序
Hash不适用于区分度小的列上

参考:https://dev.mysql.com/doc/refman/5.7/en/create-index.html

原文地址:https://www.cnblogs.com/zyf-yxm/p/12121125.html

时间: 2024-10-26 16:33:49

mysql 索引中的USING BTREE有什么用的相关文章

[转载] mysql 索引中的USING BTREE 的意义

索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型. 根据存储引擎定义每个表的最大索引数和最大索引长度.所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节. 大多数存储引擎有更高的限制.MySQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关: MYISAM和InnoDB存储引擎只支持BTREE索引:MEMORY和HEAP存储引擎可以支持HASH和BTREE索引 B-tree索引是数据库中存取和查找文件(

mysql 索引和查询优化

对于任何DBMS,索引都是进行优化的最主要的因素.对于少量的数据,没有合适的索引影响不是很大,但是,当随着数据量的增加,性能会急剧下降.如果对多列进行索引(组合索引),列的顺序非常重要,MySQL仅能对索引最左边的前缀进行有效的查找. 例如:假 设存在组合索引it1c1c2(c1,c2),查询语句select * from t1 where c1=1 and c2=2能够使用该索引.查询语句select * from t1 where c1=1也能够使用该索引.但是,查询语句select * f

MySQL索引和查询优化

对于任何DBMS,索引都是进行优化的最主要的因素.对于少量的数据,没有合适的索引影响不是很大,但是,当随着数据量的增加,性能会急剧下降.如果对多列进行索引(组合索引),列的顺序非常重要,MySQL仅能对索引最左边的前缀进行有效的查找. 例如:假 设存在组合索引it1c1c2(c1,c2),查询语句select * from t1 where c1=1 and c2=2能够使用该索引.查询语句select * from t1 where c1=1也能够使用该索引.但是,查询语句select * f

【转】MySQL索引和查询优化

原文链接:http://www.cnblogs.com/mailingfeng/archive/2012/09/26/2704344.html 对于任何DBMS,索引都是进行优化的最主要的因素.对于少量的数据,没有合适的索引影响不是很大,但是,当随着数据量的增加,性能会急剧下降.如果对多列进行索引(组合索引),列的顺序非常重要,MySQL仅能对索引最左边的前缀进行有效的查找. 例如:假 设存在组合索引it1c1c2(c1,c2),查询语句select * from t1 where c1=1 a

MySQL索引(一)

1.索引的类型 1) B-Tree索引 (1)概念 人们常说的Mysql索引一般是指B-Tree索引,它使用B-Tree数据结构来存储数据.存储引擎以不同的方式使用B-Tree索引,性能也各有不同,各有优劣. MyISAM使用前缀压缩技术使得索引更小,但InnoDB则按照原数据格式进行存储. MyISAM索引通过数据的物理位置引用被索引的行,而InnoDB则根据主键引用被索引的行. B-Tree通常意味着所有的值都是按顺序存储的,并且每一个叶子页到根的距离相同. 下图展示了B-Tree索引的抽象

Mysql索引数据结构详解(1)

慢查询解决:使用索引 索引是帮助Mysql高效获取数据的排好序的数据结构 常见的存储数据结构: 二叉树 二叉树不适合单边增长的数据 红黑树(又称二叉平衡树) 红黑树会自动平衡父节点两边的节点数 B+树 Mysql底层用的是B+树 非叶子节点不存储data(data在Mysql中有可能是查询目标行的所有数据), 只存储索引(冗余),可以存放更多索引,减少io次数. 叶子节点包含所有索引字段 叶子节点用指针连接,提高区间访问的性能. B+树一个节点16kb,存储一个索引需要14字节 ,故一个节点可存

MySQL索引的Index method中btree和hash的优缺点

MySQL索引的Index method中btree和hash的区别 在MySQL中,大多数索引(如 PRIMARY KEY,UNIQUE,INDEX和FULLTEXT)都是在BTREE中存储,但使用memory引擎可以选择BTREE索引或者HASH索引,两种不同类型的索引各自有其不同的使用范围. Hash 索引结构的特殊性,其检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-T

MySQL索引类型 btree索引和hash索引的区别

来源一 Hash 索引结构的特殊性,其检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引. 可 能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢?任何事物都是有两面性的,Hash 索引也一样,虽然 Hash 索引效率高,但是 Hash 索引本身由于其特殊性也带来了很多限制和弊端

MySQL索引一(B-Tree)

一:索引的类型 二:索引的优点 三:高性能索引策略 四:索引案例 1.1类型介绍 索引有很多类型,可以为不同场景提供更好的性能.在MySQL中,索引是在存储引擎层而不是服务器层实现的.所以,并没有统一的索引标准:不同存储引擎的索引的工作方式并不一样,也不是所有的存储引擎都支持所有类型的索引,即使多个存储引擎支持同一种类型的索引,其底层的实现也可能不同 1.2 B-Tree索引 存储引擎以不同的方式使用B-Tree索引,性能也各有不同,各有优劣. 例如MyISAM使用前缀压缩技术使得索引更小,但I