破局AI落地难,数据标注行业需率先变革丨曼孚科技

?2019年,国内人工智能领域的投融资热情大幅降低,相当数量的AI企业彻底消失在了历史的长河中,“人工智能寒潮已至”甚至成为行业年度热词。

与前几年创业与投资热情齐头并进的盛况相比,近段时间的AI行业显然萧条了很多。

究其原因,“AI落地难”要负主要责任。

从自动化时代到智能化时代,人工智能创造的价值在不断增长。与此同时,业务场景的精细度与复杂度也在不断提升,为人工智能技术的落地带来一系列挑战。

以国内人工智能企业为例。目前国内几个较大的人工智能独角兽企业,商业化落地主要集中在金融、安防监控、手机移动互联网三个领域,而其他领域则表现平平。

细化到具体业务场景中,汽车自动驾驶是AI最重要的商业化落地领域,相关人工智能企业在无人驾驶/自动驾驶投入巨大,但距离大规模商业化应用依然十分遥远。

目前自动驾驶的主要应用场景无非就是路测一下、会展展示一下、无人驾驶园区试驾一下,但这些显然无法为一家以营利为目的的企业带来任何实质性的收入。

汽车自动驾驶距离大规模商用仍有一段距离

企业的长久健康生存需要盈利,AI企业同样不例外。摆在一众AI企业面前最为迫切的现实需求就是,如何破局“AI落地难”的困境。

古语有云“解铃还须系铃人”,破局AI落地难的关键,是找到何种因素导致了这种结果。

在人工智能领域,算法、算力与数据是构成行业的3大重要基础要素。长久以来, AI企业关注的重点主要集中于算法与算力领域,对于数据领域的关注度则普遍较低。

事实上,作为人工智能行业的基础,数据在AI落地的过程中所扮演的角色显然被忽视了。要把人工智能应用到具体的业务场景中,首先需要解决数据获取和数据治理等相关问题,具体到行业中就是数据标注行业需率先变革。

一张经过数据标注后的图片(图片来源:曼孚科技数据标注平台)

人工智能行业内有一个简单但很重要的共识:

数据集质量的高低直接决定最终模型质量的好坏。

在人工智能行业兴起初期,行业关注的重点主要集中于理论与技术本身,此时一种前沿的技术概念都有可能为企业带来规模庞大的外部投资。

但是,到了技术相对成熟期,投资人与AI企业关注的重点就转向了技术的商业化落地,毕竟企业与投资人最为看重的还是盈利。

然而,理论与实践的结合总是不那么一帆风顺。AI企业在商业化落地的过程中,发现了一个很棘手的问题:标注数据集的质量可以满足实验室的基本需求,但却无法支撑起AI落地的发展洪流。

我们以实例为证:

在人脸识别等单点场景,涉及到的数据类型一般比较简单。但在更完整的业务场景中,数据就会变得更加复杂起来;

工业场景中,会涉及到工业现场图像数据、工艺流程文本数据和设备运行的时序数据等更加精细化数据的标注;

医疗场景中,对医疗影像和文本的标注,需要具备医学专业知识的人员进行……

以往在实验室里仅需少量且质量尚可的数据集即可满足基本实验的需求,但是到了具体化的商业落地场景中,现实给标注数据集提出了诸多新的要求:

海量、高质量、场景化、定制化、智能化……

高质量标注数据集才能撑起人工智能行业的未来(图片来源:曼孚科技数据标注平台)

在这样的新形势下,破局AI落地难的关键,就在于数据标注行业的率先变革。

作为人工智能行业的基础,数据标注行业长期处于刀耕火种的粗放状态中,披着人工智能的外衣,但是本质上仍然属于劳动密集型产业。

在AI商业化落地的大潮下,数据标注行业不应拖了行业发展的后腿,而应该主动为人工智能行业的发展保驾护航。

以曼孚科技数据标注服务为例,一方面通过培训专业标注团队与提供定制化服务,来解决数据采集、数据标注的质量问题;另一方面,通过自研SaaS数据标注服务平台与自动化的辅助工具,来解决数据标注的效率问题,具体的努力如下:

1. 专业团队打造优质数据服务平台,服务成本降低30%以上;

2. 独立自研SaaS数据标注平台,预标注技术加持下标注效率可提升4倍以上;

3. 实时精确估算与AI辅助筛查,数据精确至99%以上;

4. 支持私有云部署,实时监测加强安全保护;

5. 定制化场景搭建,7X24小时快速技术响应。

通过以上努力,曼孚科技希望重新构建起人工智能行业发展的基石,用高质量的标注数据集破局“AI落地难”的困境,为相关人工智能企业的商业化落地之路扫清障碍。

目前,曼孚科技的标注数据集正大规模应用于自动驾驶、安防、VR/AR、无人机、新零售、AI教育、工业机器人等相关领域,曼孚科技期望用高质量的数据撑起人工智能行业新的未来!

原文地址:https://www.cnblogs.com/manfukeji/p/12157861.html

时间: 2024-10-10 21:04:40

破局AI落地难,数据标注行业需率先变革丨曼孚科技的相关文章

数据安全,安防数据标注行业的核心命脉丨曼孚科技

在人工智能迅猛发展的今天,我们正在享受着智能安防带来的安全感. 智能安防除了可以实时监测正在发生的各种状况以外,还可以对内容进行分析预测,提取其中关键信息(如车牌.人脸.动作等),起到"防患于未然"的作用. 在当下AI行业普遍遭遇"落地难"的大背景下,智能安防可谓是人工智能落地应用的典型范例,为其他行业的AI场景化落地应用提供了实质性的参考. 然而,与其他行业更注重模型与数据质量不同,智能安防领域更加注重数据的安全性,尤其是标注数据的安全性. 作为人工智能行业的基础

人工智能数据标注这些年:从幕后到前台丨曼孚科技

"你了解人工智能行业吗?"? 10个人中可能有9个人会给出肯定的回答. "你了解数据标注行业吗?" 10个人中可能有9个人会茫然地摇头. 与处在聚光灯中心的人工智能科技公司不同,数据标注行业长期处于聚光灯之外的灰色地带,很长一段时间内都是被边缘化乃至低视的一个存在. 不过,随着时代发展带来需求的改变,数据标注行业也在发生着日新月异的变化,开始从幕后走向前台. 一.幕后:粗放与混乱交织 数据标注行业里流传着这样的一段话:"有多少智能,就有多少人工"

破局自动驾驶落地难,数据标注行业变革是关键丨曼孚科技

随着过去几年自动驾驶"风口"兴起,越来越多的资本与研发力量投入到自动驾驶领域. 相关机构预测,半自动驾驶和全自动驾驶汽车未来几十年的市场潜力巨大.到2035年,仅中国就将有约860万辆自动驾驶汽车,其中约340万辆为全自动无人驾驶,520万辆为半自动驾驶. 不过,自动驾驶是一个相当复杂的工程系统,需要众多技术的融合与精度配合,且不可能依赖资本的力量在短时间内迅速爆发,自动驾驶商业化还面临方方面面的挑战.所以一直以来,自动驾驶给人的感觉都是"热度很高但距离很远". 自

数据标注,自动驾驶汽车的新“引擎”丨曼孚科技

伴随着计算机视觉技术的日臻成熟,出行生态不断智能化,这其中典型的应用场景就是汽车自动驾驶. 1.汽车自动驾驶真的来了 2018年,世界上首个无人出租车正式上路.这是硅谷初创公司 Drive.ai 在美国得克萨斯州 Frisco 实现的第一批无人出租车出行. 国内领域,百度是汽车自动驾驶行业的佼佼者.今年11月30日,百度在广州开启了RoboTaxi的试运营服务,这是百度的自动驾驶出租车在长沙试运营后,又一个城市开始了自动驾驶汽车的试运营. 如果算上滴滴年底在上海推出自动驾驶出租车的计划,2019

数据标注在新零售领域中的具体应用丨曼孚科技

零售业是劳动密集型行业,其中收银结算成本在总成本中占据相当比重. 随着深度学习发展,借助图像识别技术实现零售行业的降本增效已是大势所趋.? 目前主要流行的一种智能货柜解决方案是"视觉识别解决方案",即以图像识别为技术核心,摄像头.主板为硬件核心,对目标产品进行目标检测和分类,实现自动识别与结算,提升购物体验与节省人力成本. 目前,此类解决方案已经在部分地区开始商用.然而,在实际应用的过程中,部分问题也开始逐渐暴露,核心点集中于物品的识别准确率上. 智能货柜售卖的商品最常见的是饮料和盒装

数据标注在无人机领域中的具体应用丨曼孚科技

随着AI技术在无人机领域的大规模应用,无人机开始变得越来越智能化. 不仅可以做到实时跟踪锁定拍摄,实时处理目标信息,还可以做到自动识别躲避障碍.? 这些动作的背后是无人机计算机视觉技术的突破. 计算机视觉技术,简单来说就是摄像头+传感器结合计算机模拟类似人眼与大脑的功能,来感知周围三维空间,进而识别物体.判断运动状态以及其他. 在无人机领域,计算机视觉技术主要解决两个问题.一个是距离感知,一个是目标检测. 距离感知,即实时感知周围环境,主要解决的是自动识别躲避障碍问题.空中环境虽然不如地面环境复

标注案例分享:道路病害图片数据标注项目丨曼孚科技

无论是水泥路面还是沥青路面,在通车使用一段时间之后,都会出现各种损坏.变形及其它缺陷,这些统称为道路病害. 常见的病害类型有:龟裂.坑槽.车辙.松散.沉陷.桥头涵顶跳车.表面破损等等,这些道路病害的存在不仅会影响到道路的正常使用,还会增加潜在的交通隐患,影响行车安全. 因此,及时发现并处理道路病害是一件非常现实的需求.以往,发现道路病害主要依赖于人力巡检,随着人工智能计算机视觉技术的发展,目前已经实现通过机器自动检测识别各种道路病害. 不过机器本身是并不具备识别各种道路病害的能力,前期机器学习依

报告:中美AI产业对比与行业发展趋势洞察丨曼孚科技

?人工智能(AI)作为全球科技和产业变革的关键驱动力,依靠强大的技术积累与创新,正进一步释放巨大能量. 在各国政策的支持引导下,以大型人工智能厂商为主导,人工智能持续与各种应用场景深度融合,催生出了大量的新技术.新业态与新模式. 近期,知名咨询机构沙利文发布了一份名为< 2019中美人工智能产业及厂商评估>的报告,报告从多角度分析了目前中美AI产业发展的异同,并归纳出人工智能产业的最新发展趋势. 1. 中美人工智能产业概况 人工智能产业发展60余年,技术已日趋成熟,产业布局和生态建设逐步完善,

数据标注案例分享:车辆前置摄像头数据采集标注项目丨曼孚科技

?在自动驾驶技术中,感知是最基础的部分,没有对车辆周围三维环境的定量感知,就犹如人没有了眼睛,无人驾驶的决策系统就无法正常工作. 与其他应用场景相比,自动驾驶的应用场景相对复杂,尤其面对复杂多变的路况环境,感知技术的突破需要依赖相应的数据采集标注项目的支持. 一.项目背景 车辆前置道路信息采集主要解决两个个关键需求: 1. 障碍物的距离信息;2. 相对速度向量. 通过对障碍物的连续追踪,根据距离的变化和时间间隔得到相对速度信息,以满足自动驾驶相关业务的需求. 多城市多道路,会带来不同的路况,信号