- 题意: 二维平面上n个点,每个点可以建厂,也可以与其他点连边,建厂花费为\(c_i\),与j连边花费为\((k_i+k_j)*dis(i,j)\),dis为两点之间的欧式距离,求让每个点都通电的最小花费与方案
- 思路: 维护使这个点通电的花费的优先队列,一开始先把建厂放进去,然后每次拿出最小花费的点i,再用i去更新与i建路的花费(有点像最小生成树).
#include<bits/stdc++.h>
#define ll long long
#define pii pair<int,int>
using namespace std;
const int N = 1e4+10;
pii pos[N];
ll c[N],k[N],vis[N],cnt;
struct node{
ll type,val,id; // 0: 建厂, !0:建路
bool operator <(const node oth)const {
if(val == oth.val) return type > oth.type;
return val > oth.val;
} // 最小花费,如果花费相同,则优先建路
};
vector<pii> road; // 建路
vector<int> chang; // 建厂
int dis(int i,int j){
return abs(pos[i].first - pos[j].first) + abs(pos[i].second - pos[j].second);
}
int main(){
priority_queue<node> que;
int n;
ll ans = 0;
scanf("%d",&n);
for(int i=1;i<=n;++i){
scanf("%d%d",&pos[i].first,&pos[i].second);
}
for(int i=1;i<=n;++i) scanf("%d",&k[i]);
for(int i=1;i<=n;++i) scanf("%d",&c[i]),que.push((node){0,k[i],i});
while(cnt<n && que.size()){
node tp = que.top(); que.pop();
if(vis[tp.id]) continue;
ans+=tp.val; vis[tp.id] = 1;
if(tp.type==0){
chang.push_back(tp.id);
}else{
road.push_back((pii){tp.id,tp.type});
}
for(int i=1;i<=n;++i){
ll val = dis(i,tp.id);
if(!vis[i] && val<=k[i])
que.push((node){tp.id,val*1LL*(c[i]+c[tp.id]),i});
}
}
printf("%lld\n%d\n",ans,chang.size());
for(auto ch:chang){
printf("%d ",ch);
}
printf("\n%d\n",road.size());
for(auto ro:road){
printf("%d %d\n",ro.first,ro.second);
}
return 0;
}
\(n^2log(n)\)水过
原文地址:https://www.cnblogs.com/xxrlz/p/11781282.html
时间: 2024-10-09 00:00:37