pycharm与anaconda的使用

1.anaconda与pycharm的关系

1、python

python自身缺少numpy、matplotlib、scipy、scikit-learn....等一系列包,需要我们安装pip来导入这些包才能进行相应运算(python3.5自带了get-pip.py,不需额外下载安装),在cmd终端输入:pip install numpy就能安装numpy包了。每次都额外安装所需要的包略麻烦,这时候我们可以采用anaconda了。

2、Anaconda

Anaconda(开源的Python包管理器)是一个python发行版,包含了conda、Python等180多个科学包及其依赖项。包含了大量的包,使用anaconda无需再去额外安装所需包。python3.5自带了一个解释器IDLE用来执行.py脚本,但是却不利于我们书写调试大量的代码。常见的是用notepade++写完脚本,再用idle来执行,但却不便于调试。

包括以下部分:

Anaconda Prompt 是一个Anaconda的终端,可以便捷的操作conda环境。

IPython 是一个 python 的交互式 shell,比默认的python shell 好用得多,支持变量自动补全,自动缩进,支持 bash shell 命令,内置了许多很有用的功能和函数。

Jupyter Notebook 这得从IPython 3.x版本开始说起,这是最后的大一统版本,包括notebook、qtconsole等等,从IPython 4.0版本开始IPython只集中精力做交互式shell,变得轻量化,而剩下的notebook格式,qtconsole,和notebook web应用等都分离出来统一命名为Jupyter。至此IPython和Jupyter分家。

Jupyter Qtconsole 调用交互式命令台。从IPython 4.0版本开始,很多IPython子命令现在变成了Jupyter子命令,如ipython notebook现在是jupyter noteboook。

Spyder 是一个使用Python语言的开放源代码跨平台科学运算IDE。Spyder可以跨平台,也可以使用附加组件扩充,自带交互式工具以处理数据。

3、PyCharm

PyCharm是一种Python IDE(集成工具),带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具,比如调试、语法高亮、Project管理、代码跳转、智能提示、自动完成、单元测试、版本控制。此外,该IDE提供了一些高级功能,以用于支持Django框架下的专业Web开发。将anaconda中的python.exe集成到pycharm中,便可以在使用pycharm的过程中使用到所有anaconda的包了。

4、IDE

集成开发环境(IDE,Integrated Development Environment )是用于提供程序开发环境的应用程序,一般包括代码编辑器、编译器、调试器和图形用户界面等工具。集成了代码编写功能、分析功能、编译功能、调试功能等一体化的开发软件服务套。所有具备这一特性的软件或者软件套(组)都可以叫集成开发环境。如微软的Visual Studio系列,Borland的C++ Builder、Delphi系列等。该程序可以独立运行,也可以和其它程序并用。IDE多被用于开发HTML应用软件。例如,许多人在设计网站时使用IDE(如HomeSite、DreamWeaver等),因为很多项任务会自动生成。

发行版由个人,松散组织的团队,以及商业机构和志愿者组织编写。它们通常包括了其他的系统软件和应用软件,以及一个用来简化系统初始安装的安装工具,和让软件安装升级的集成管理器。
————————————————
版权声明:本文为CSDN博主「X_dmword」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/X_dmword/article/details/88848573

2.在pycharm中使用anaconda的不同环境

总体而言有两种方式进行“环境”的管理:

1.在anaconda中提前准备好项目所需的环境,然后在pycharm中选择相应环境的解释器;

2.在pycharm中设定新建项目时随即生成对应的环境。

方式一:

创建新环境:

可以在Anaconda Prompt中使用命令行的方式创建新的“环境”,也可以在Anaconda Navigator的图形界面中点击鼠标创建新的“环境”。

Prompt中:conda create --name <env_name> <package_names>

<env_name> 即创建的环境名。建议以英文命名,且不加空格,名称两边不加尖括号“<>”。

<package_names> 即安装在环境中的包名。名称两边不加尖括号“<>”。

如果要安装指定的版本号,则只需要在包名后面以 = 和版本号的形式执行;如果要在新创建的环境中创建多个包,则直接在 <package_names> 后以空格隔开,添加多个包名即可,例如

conda create -n python3 python=3.5 numpy pandas 

即创建一个名为“python3”的环境,环境中安装版本为3.5的python,同时也安装了numpy和pandas。

Navigator中:

在左边列表中点击“Environments”,选择下方“create”,输入新环境的名字,等待即可。如下图:

可以看到,除了默认的base环境,我又新建了两个新的环境,准备好环境后打开pycharm,新建项目,然后选择project interpreter(项目解释器),如下图所示:

忽略3中显示的python解释器,它是用python官网的安装包安装的,而我们需要的是上一步新建环境中的解释器。

点击框中的4,出现如下窗口,然后按照1、2的顺序点击:

在anaconda安装路径中的envs文件夹中可以找到所有现有的“环境”,点击去之后,选择python.exe即可,最后点击确定。

方式二:在新建项目时随即生成新的环境

在pycharm新建项目,同上,选择 project interpreter,如下图所示:

在4的下拉框中选择conda方式,然后pycharm会自动检测到location和python version,所以这两项默认就行。

最关键的是5,conda executable查了一圈都没有人特别说明,基本都是使用我刚才说的方式一,而且还都是用的anaconda默认的base环境。需要说明,这是一种非常不好的方式,因为之所以使用anaconda,就是因为它强大的环境控制能力,可以在不同的环境中使用不同版本的包,如果所有项目都直接指定某一固定的解释器,那为什么还要折腾anaconda?直接使用pip+virtualenv也是同样可以的。言归正传,conda executable指的是conda可执行文件(conda.exe)的位置,默认情况下为空,如果不指定,则会提示conda executable path is empty,需要手动选择或者输入。如6所示。它的位置在anaconda的安装位置的Scripts文件夹下,选择之后点击确定即可。

需要注意的是,使用方式二随之创建的新环境的位置同样在anaconda安装路径中的envs文件夹下,也同样可以使用Anaconda Prompt或者Anaconda Navigator进行环境管理和包管理,可以说是非常方便使用了。

两种方式区别的浅见:

方式一:需要提前准备好所需的环境,当项目间的包没有干扰时,可以复用其他项目的库,避免每次重新安装

方式二:每次都会生成独立的环境,不会对其他的项目造成干扰,但是每次创建项目时都会耗费较长的时间
————————————————
版权声明:本文为CSDN博主「Wang_PChao」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/JT_WPC/article/details/86355903

3.为什么说anaconda中新建的环境是虚拟环境?

anaconda所谓的创建虚拟环境其实就是安装了一个真实的python环境, 只不过我们可以通过activate,conda等命令去随意的切换我们当前的python环境, 用不同版本的解释器和不同的包环境去运行python脚本.

4.在pycharm中使用anaconda中的库

下载anaconda后会发现它同时下载了许多的库,在spyder中可以正常使用,但在pycharm中会发现显示没有,用pip下载也会显示已有,以下是导入方法:

打开pycharm

然后选择anaconda这个

如果没有,选择右上角设置,add,点ok添加(我的已有不能再添加)

改变以后如果没有导入所有库,点击右边的anaconda图标(一次没有完全导入就再点一次)

这时这个文件就可以使用这些库了
如果还需要别的库,点击右边的加号,搜索下载即可

这个方法同样适用于引进别的库(比如pip下载的库)
————————————————
版权声明:本文为CSDN博主「隰有游龙」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_44616044/article/details/90142037

https://blog.csdn.net/honest_boy/article/details/95222818

5.anaconda中的包如何传到pycharm中使用?

在pycharm的setting中设置

在project interpreter 中的 existing environment 中选择 anaconda3安装目录下的的 python.exe 就可以了,然后会自动加载,!最后形成如图片所示的样子!

转载于:https://www.cnblogs.com/xuying-fall/p/8298923.html

6.每次在anaconda中新建一个环境,都要重新安装各种库吗?

有的时候我们在使用anaconda3 的虚拟环境时,需要配置一个类似的环境,重新配置的话太过麻烦,因此可以复制或克隆一个类似的环境,然后再相应的删减或增加依赖的包:

复制或克隆环境:

conda create -n 新环境名称–clone 被克隆环境名称

例如,通过克隆tensorflow2来创建一个称为newtensorflow的副本:

conda create -n newtensorflow–clone tensorflow2
————————————————
版权声明:本文为CSDN博主「人间兵库saleng」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_42815385/article/details/88353306

查现有环境 
conda info --env

复制环境
有两种办法复制环境:

一,在本机上,直接使用

conda create -n 新环境名 --clone 旧环境名

复制既有环境

二,如果要复制到其他机器,就要考虑导出当前环境到文件,利用文件再次创建环境

1) 导出环境

首先激活要导出的环境

conda activate 环境名

导出环境

conda env export > 环境名.yaml
利用conda env export 导出的是个yaml格式的文件,该文件记录了环境名,软件源地址以及安装包列表
2) 使用yaml配置文件创建新环境

conda env create -f 环境名.yaml
在新的机器中可直接执行上述命令,生成的环境与复制源完全一样(包括环境名),如果想在同一台机器上复制,需要把yaml文件中的环境名修改为一个新的名字,否则会冲突。
【注】还有一种复制环境的方式

conda list --explicit > env.txt
conda create -n newenv -f env.txt
这种方式只能复制环境中以conda install安装的包,不能复制pip install安装的包,因此不建议使用。
————————————————
版权声明:本文为CSDN博主「马大哈先生」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_37764129/article/details/102496746

7.既然在anaconda中可以新建各种python版本的环境,那为什么还有anaconda2&3的区别呢?

暂时不是很了解2与3的区别,但是这不是当前我应该关注的问题,多敲代码更实在。

原文地址:https://www.cnblogs.com/hejer/p/12108775.html

时间: 2024-12-20 22:07:57

pycharm与anaconda的使用的相关文章

pycharm 和 Anaconda 下的 opencv 安装

学习真的切忌三天打鱼两天晒网!! 一开始python下的opencv已经都弄好了,中间电脑坏了一次,好久没有接触这个,就全部都忘完了.深感惋惜. 今天又从新安装了一下opencv.在anaconda下的安装非常的方便,只要把opencv下的一个cv2.pyd文件复制到anaconda下就可以了.具体操作是: 先找到你的opencv路径下的cv2.pyd,------------------D:\Program Files\opencv\build\python\2.7\x64 将cv2.pyd复

python编译环境发掘——从IDLE到sublime到pycharm到Anaconda

一个好的编译器对于我们处理日常的科研很关键,好的编译器无论是从界面,字体风格,提示,调试等各方面都能从用户角度出发,提供最好的使用体验.Python本身自带的IDLE或者在CMD里进行操作和调试,对于小型的测试程序和学习的时候是可以的:但是对相对比较大的程序,它们就显得有些力不从心了,首先是查找和提示的,还有就是当你想要改变程序中某个变量或者函数的名称,一个个查找是让人奔溃的事情. 本人显示从IDLE和CMD开始Python码城过程的,慢慢的发现,相对于以前使用的VS和eclipse,它们显得太

Python,Pycharm,Anaconda等的关系与安装过程~为初学者跳过各种坑

1.致欢迎词 我将详讲讲述在学Python初期的各种手忙脚乱的问题的解决,通过这些步骤的操作,让你的注意力集中在Python的语法上以及后面利用Python所解决的项目问题上.而我自己作为小白,很不幸的没有错过任何的坑,都跳了进去,所以在这里写下经验贴,一方面希望能给后来的学者能够高效的避开这些坑,另一方面也算是自己的总结与警告. 2.内容大纲 2.1 安装顺序 能够使用Python的安装过程我建议这样:Anaconda-Pycharm Anaconda我建议安装Anaconda3 原因后面会解

Pycharm配置Anaconda

所需软件 PyCharm Community Edition 2017.3.2 x64,Anaconda 官网可以自行下载.有钱还是支持正版,没钱的话......你懂得,度娘. 两个软件的安装就不详细叙述了,下面直接讲Anaconda的配置.打开Pycharm File-->Setting-->Project Test-->Project interperter 点击add local 然后从Base interperter 中选择Anaconda的Python.exe 点击Apply,

安装python、pycharm 和anaconda

由于刚开始学习python,在安装过程中遇到了很多坑,为了方便大家,于是有了该篇文章,本篇文章主要针对windows系统下的下载及安装. 刚开始学习的时候,用的是python+sublime编辑器,后来因为安装各种库太麻烦,而anaconda中刚好包含了数据处理的各种库,如numpy, matplotlib, scipy等,就直接安装anaconda,后来为了调试方便又安装了pycharm,它的界面类似于之前用过的matlab软件的界面,有亲切感.对于初学者,个人推荐用anaconda+pych

PyCharm配置Anaconda的艰难心路历程

在安装好pycharm后,想着anaconda中的类库会比较全,就想着将anaconda配置到pycharm中,这样可以避免以后下载各种类库. 第一步就是要下载并安装anaconda,在安装的过程中历经困难,每次都在最后一步安装失败,报错信息为failed to create anacoda menue?网上也给出了各种解决方案,但是上天好像没有那么眷顾我,每种解决方案都不适用于我,方法如下: (1)使用默认安装路径,不适用自定义路径 (2)安装路径中不能包含中文字符 (3)系统相对路径过长,修

pycharm和anaconda

借鉴其他博文和亲自操作做一简要的总结: anaconda是python中一个管理包很好用的工具,可以轻松实现python中的各种包的管理.相信大家会有这样的体验,在pycharm中也是有自动搜索和下载的功能,但是这个功能对于一些包是可以使用的,但是总会遇到有些包下载失败或查询不到的情况,这种时候让人很苦恼,这就引申出了anaconda的好处. 下面也是从别的地方贴过来的说辞: Anaconda的优点总结起来就八个字:省时省力.分析利器. .省时省力:Anaconda通过管理工具包.开发环境.Py

pycharm使用anaconda的python环境

在pycharm中,点击菜单栏 "File" ,找到 "Settings" 点开 "Project datastructure" ,选择 "Project Interpreter" 在 "Existing interpreter" 下的 "Interpreter" 右侧下拉框找到自己安装的anaconda位置中的python.exe 确定即可 原文地址:https://www.cnblo

Pycharm:安装anaconda中没有的第三方库

Pycharm需要用到的pyKriging第三方库库,但是下载了Anaconda后无法在Pycharm中搜到,之前还能搜到的,所以一定是因为Anaconda的原因,后来经过摸索,终于找到了解决问题的办法: File->Settings->Project:Python Test->Project Interpreter->右边+号 搜索第三方库pyKriging,空空如也 解决办法:取消选取右边这个Anaconda标志,再搜索就可以了 原文地址:https://www.cnblogs