bzoj3510 首都 LCT 维护子树信息+树的重心

题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=3510

题解

首先每一个连通块的首都根据定义,显然就是直径。

然后考虑直径的几个性质:

  1. 定义:删去这个点以后剩下的连通块最大的最小的点为重心。
  2. 一棵树最多只能有两个相邻的直径;
  3. 一棵树的重心到一棵树中所有点的距离和最小。(这个也是题目的条件转化为重心的原因)
  4. 两棵树的并的重心在两棵树各自的重心的连线上。
  5. 一棵树添加或者删除一个节点,树的重心最多只移动一条边的位置。

有了这些性质,我们可以发现,两个连通块合并的时候,新的重心离较大的连通块的重心的距离不超过较小的连通块的大小。同时,新的重心在原来的两个中心之间。

那么我们就有了重心的移动方向和移动距离限制。

所以考虑启发式合并,均摊每次暴力移动 \(O(\log n)\) 次。每次移动求出权值需要子树大小来求。动态子树大小可以用 LCT 维护子树信息实现。



因此总的时间复杂度为 \(O(m\log^2 n)\)。

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back

template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;}

typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;

template<typename I> inline void read(I &x) {
    int f = 0, c;
    while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
    x = c & 15;
    while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
    f ? x = -x : 0;
}

const int N = 100000 + 7;

#define lc c[0]
#define rc c[1]

int n, m;
int sum;

struct Node { int c[2], s, sum, siz, fa, rev; } t[N];
int st[N];
inline bool idtfy(int o) { return t[t[o].fa].rc == o; }
inline bool isroot(int o) { return t[t[o].fa].lc != o && t[t[o].fa].rc != o; }
inline void connect(int fa, int o, int d) { t[fa].c[d] = o, t[o].fa = fa; }
inline void pushup(int o) {
    t[o].s = t[t[o].lc].s + t[t[o].rc].s + 1;
    t[o].siz = t[t[o].lc].siz + t[t[o].rc].siz + t[o].sum + 1;
}
inline void pushdown(int o) {
    if (!t[o].rev) return;
    if (t[o].lc) t[t[o].lc].rev ^= 1, std::swap(t[t[o].lc].lc, t[t[o].lc].rc);
    if (t[o].rc) t[t[o].rc].rev ^= 1, std::swap(t[t[o].rc].lc, t[t[o].rc].rc);
    t[o].rev = 0;
}
inline void rotate(int o) {
    int fa = t[o].fa, pa = t[fa].fa, d1 = idtfy(o), d2 = idtfy(fa), b = t[o].c[d1 ^ 1];
    if (!isroot(fa)) t[pa].c[d2] = o; t[o].fa = pa;
    connect(o, fa, d1 ^ 1), connect(fa, b, d1);
    pushup(fa), pushup(o);
}
inline void splay(int o) {
    int x = o, tp = 0;
    st[++tp] = x;
    while (!isroot(x)) st[++tp] = x = t[x].fa;
    while (tp) pushdown(st[tp--]);
    while (!isroot(o)) {
        int fa = t[o].fa;
        if (isroot(fa)) rotate(o);
        else if (idtfy(o) == idtfy(fa)) rotate(fa), rotate(o);
        else rotate(o), rotate(o);
    }
}
inline void access(int o)  {
    for (int x = 0; o; o = t[x = o].fa) {
        splay(o);
        t[o].sum += t[t[o].rc].siz;
        t[o].sum -= t[x].siz;
        t[o].rc = x;
        pushup(o);
    }
}
inline void mkrt(int x) {
    access(x), splay(x);
    t[x].rev ^= 1, std::swap(t[x].lc, t[x].rc);
}
inline int getrt(int x) {
    access(x), splay(x);
    while (pushdown(x), t[x].lc) x = t[x].lc;
    splay(x);
    return x;
}
inline void link(int  x, int y) {
    mkrt(x);
    if (getrt(y) != x) {
        access(y), splay(y);
        t[x].fa = y, t[y].sum += t[x].siz, pushup(y);
    }
}

inline int dfs(int x, int sz, int &rt) {
    if (!x) return 0;
    pushdown(x);
    if (dfs(t[x].lc, sz, rt)) return 1;
    splay(x), pushdown(x);
    if ((t[x].sum + t[t[x].rc].siz + 1) * 2 > sz || ((t[x].sum + t[t[x].rc].siz + 1) * 2 == sz && x < rt)) rt = x;
    else return 1;
    if (dfs(t[x].rc, sz, rt)) return 1;
    return 0;
}

inline void work() {
    while (m--) {
        char opt[7];
        int x, y;
        scanf("%s", opt);
        if (*opt == 'X') printf("%d\n", sum);
        else if (*opt == 'Q') read(x), printf("%d\n", getrt(x));
        else {
            read(x), read(y);
            int px = getrt(x), py = getrt(y), rt;
            sum ^= px, sum ^= py;
            if (t[px].siz > t[py].siz || (t[px].siz == t[py].siz && px > py)) std::swap(x, y), std::swap(px, py);
            link(x, y), x = px, y = py;
            access(x), splay(y);
            dfs(y, t[y].siz, rt);
            mkrt(rt), sum ^= rt;
        }
    }
}

inline void init() {
    read(n), read(m);
    for (int i = 1; i <= n; ++i) sum ^= i, t[i].s = t[i].siz = 1;
}

int main() {
#ifdef hzhkk
    freopen("hkk.in", "r", stdin);
#endif
    init();
    work();
    fclose(stdin), fclose(stdout);
    return 0;
}

原文地址:https://www.cnblogs.com/hankeke/p/bzoj3510.html

时间: 2024-10-29 15:14:32

bzoj3510 首都 LCT 维护子树信息+树的重心的相关文章

【BZOJ3510】首都 LCT维护子树信息+启发式合并

[BZOJ3510]首都 Description 在X星球上有N个国家,每个国家占据着X星球的一座城市.由于国家之间是敌对关系,所以不同国家的两个城市是不会有公路相连的. X星球上战乱频发,如果A国打败了B国,那么B国将永远从这个星球消失,而B国的国土也将归A国管辖.A国国王为了加强统治,会在A国和B国之间修建一条公路,即选择原A国的某个城市和B国某个城市,修建一条连接这两座城市的公路. 同样为了便于统治自己的国家,国家的首都会选在某个使得其他城市到它距离之和最小的城市,这里的距离是指需要经过公

【bzoj4530】[Bjoi2014]大融合 LCT维护子树信息

题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的负载是6,因为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8). 现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的询问. 输入 第一行包含两个整数N,Q,表示星球的

【LCT维护子树信息】uoj207 共价大爷游长沙

这道题思路方面就不多讲了,主要是通过这题学一下lct维护子树信息. lct某节点u的子树信息由其重链的一棵splay上信息和若干轻儿子子树信息合并而成. splay是有子树结构的,可以在rotate,access的时候由儿子update到父亲,而轻儿子的信息update不上来,需要另外记一下. 记sum[x]为我们要求的子树信息,xu[x]为x的轻儿子的子树信息. (即,xu[x]由轻儿子的sum更新,sum[x]由xu[x]和splay子树上的儿子的sum更新. 这样我们就可以完整地用lct维

Loj 2230. 「BJOI2014」大融合 (LCT 维护子树信息)

链接:https://loj.ac/problem/2230 思路: 设立siz数组保存虚点信息,sum表示总信息 维护子树信息link操作和access操作需要进行一些改动 可参考博客:https://www.cnblogs.com/GXZlegend/p/7061458.html 实现代码; #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include&l

[BJOI2014]大融合 LCT维护子树信息

Code: #include <cstdio> #include <algorithm> #include <cstring> #include <string> using namespace std; void setIO(string a){freopen((a+".in").c_str(),"r",stdin);} #define maxn 100009 #define ll long long int n,q

[XSY 1556] 股神小D LCT维护子树信息

实现 1 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <cctype> 6 #include <algorithm> 7 #include <vector> 8 using namespace std; 9 #define F(i, a, b) for (register int i = (a); i <= (b); i++)

【LCT维护基环内向树森林】BZOJ4764 弹飞大爷

4764: 弹飞大爷 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 101  Solved: 52[Submit][Status][Discuss] Description 自从WC退役以来,大爷是越来越懒惰了.为了帮助他活动筋骨,也是受到了弹飞绵羊一题的启发,机房的小伙伴们 决定齐心合力构造一个下面这样的序列.这个序列共有N项,每项都代表了一个小伙伴的力量值,如果大爷落到了 第i个小伙伴的手里,那么第i个小伙伴会把大爷弹到第i+ai个小伙伴手里

bzoj 2809 可并堆维护子树信息

对于每个节点,要在其子树中选尽量多的节点,并且节点的权值和小于一个定值. 建立大根堆,每个节点从儿子节点合并,并弹出最大值直到和满足要求. 1 /************************************************************** 2 Problem: 2809 3 User: idy002 4 Language: C++ 5 Result: Accepted 6 Time:1224 ms 7 Memory:6664 kb 8 **************

BZOJ.3510.首都(LCT 启发式合并 树的重心)

题目链接 BZOJ 洛谷 详见这. 求所有点到某个点距离和最短,即求树的重心.考虑如何动态维护. 两棵子树合并后的重心一定在两棵树的重心之间那条链上,所以在合并的时候用启发式合并,每合并一个点检查sz[]大的那棵子树的重心(记为root)最大子树的sz[] * 2是否>n: 若>n,则向fa移动一次(先把合并点Splay到根).重心还一定是在sz[]大的那棵子树中,且移动次数不会超过sz[]小的子树的点数(所以总移动次数不会超过O(n)?). 复杂度 \(O(nlog^2n)\) 具体实现..