c#之Async、Await剖析

c#之Async、Await剖析

探索c#之Async、Await剖析

2015-06-15 08:35 by 蘑菇先生, 1429 阅读, 5 评论, 收藏编辑

阅读目录:

  1. 基本介绍
  2. 基本原理剖析
  3. 内部实现剖析
  4. 重点注意的地方
  5. 总结

基本介绍

Async、Await是net4.x新增的异步编程方式,其目的是为了简化异步程序编写,和之前APM方式简单对比如下。

APM方式,BeginGetRequestStream需要传入回调函数,线程碰到BeginXXX时会以非阻塞形式继续执行下面逻辑,完成后回调先前传入的函数。

    HttpWebRequest myReq =(HttpWebRequest)WebRequest.Create("http://cnblogs.com/");
     myReq.BeginGetRequestStream();
     //to do

Async方式,使用Async标记Async1为异步方法,用Await标记GetRequestStreamAsync表示方法内需要耗时的操作。主线程碰到await时会立即返回,继续以非阻塞形式执行主线程下面的逻辑。当await耗时操作完成时,继续执行Async1下面的逻辑

static async void Async1()
    {
        HttpWebRequest myReq = (HttpWebRequest)WebRequest.Create("http://cnblogs.com/");
        await myReq.GetRequestStreamAsync();
        //to do
    }     

上面是net类库实现的异步,如果要实现自己方法异步。
APM方式:

        public delegate int MyDelegate(int x);
        MyDelegate mathDel = new MyDelegate((a) => { return 1; });
         mathDel.BeginInvoke(1, (a) => { },null);

Async方式:

static async void Async2()
    {
        await Task.Run(() => { Thread.Sleep(500); Console.WriteLine("bbb"); });
        Console.WriteLine("ccc");
    }
  Async2();
  Console.WriteLine("aaa");

对比下来发现,async/await是非常简洁优美的,需要写的代码量更少,更符合人们编写习惯。 
因为人的思维对线性步骤比较好理解的。

APM异步回调的执行步骤是:A逻辑->假C回调逻辑->B逻辑->真C回调逻辑,这会在一定程度造成思维的混乱,当一个项目中出现大量的异步回调时,就会变的难以维护。
Async、Await的加入让原先这种混乱的步骤,重新拨正了,执行步骤是:A逻辑->B逻辑->C逻辑。

基本原理剖析

作为一个程序员的自我修养,刨根问底的好奇心是非常重要的。 Async刚出来时会让人有一头雾水的感觉,await怎么就直接返回了,微软怎么又出一套新的异步模型。那是因为习惯了之前的APM非线性方式导致的,现在重归线性步骤反而不好理解。 学习Async时候,可以利用已有的APM方式去理解,以下代码纯属虚构
比如把Async2方法想象APM方式的Async3方法:

static async void Async3()
    {
        var task= await Task.Run(() => { Thread.Sleep(500); Console.WriteLine("bbb"); });
       //注册task完成后回调
        task.RegisterCompletedCallBack(() =>
        {
            Console.WriteLine("ccc");
        });
    }

上面看其来就比较好理解些的,再把Async3方法想象Async4方法:

static  void Async4()
    {
        var thread = new Thread(() =>
         {
             Thread.Sleep(500);
             Console.WriteLine("bbb");
         });
        //注册thread完成后回调
        thread.RegisterCompletedCallBack(() =>
        {
            Console.WriteLine("ccc");
        });
        thread.Start();
    }

这样看起来就非常简单明了,连async都去掉了,变成之前熟悉的编程习惯。虽然代码纯属虚构,但基本思想是相通的,差别在于实现细节上面。

内部实现剖析

作为一个程序员的自我修养,严谨更是不可少的态度。上面的基本思想虽然好理解了,但具体细节呢,编程是个来不得半点虚假的工作,那虚构的代码完全对不住看官们啊。

继续看Async2方法,反编译后的完整代码如下:

internal class Program
{
    // Methods
    [AsyncStateMachine(typeof(<Async2>d__2)), DebuggerStepThrough]
    private static void Async2()
    {
        <Async2>d__2 d__;
        d__.<>t__builder = AsyncVoidMethodBuilder.Create();
        d__.<>1__state = -1;
        d__.<>t__builder.Start<<Async2>d__2>(ref d__);
    }

    private static void Main(string[] args)
    {
        Async2();
        Console.WriteLine("aaa");
        Console.ReadLine();
    }

    // Nested Types
    [CompilerGenerated]
    private struct <Async2>d__2 : IAsyncStateMachine
    {
        // Fields
        public int <>1__state;
        public AsyncVoidMethodBuilder <>t__builder;
        private object <>t__stack;
        private TaskAwaiter <>u__$awaiter3;

        // Methods
        private void MoveNext()
        {
            try
            {
                TaskAwaiter awaiter;
                bool flag = true;
                switch (this.<>1__state)
                {
                    case -3:
                        goto Label_00C5;

                    case 0:
                        break;

                    default:
                        if (Program.CS$<>9__CachedAnonymousMethodDelegate1 == null)
                        {
                            Program.CS$<>9__CachedAnonymousMethodDelegate1 = new Action(Program.<Async2>b__0);
                        }
                        awaiter = Task.Run(Program.CS$<>9__CachedAnonymousMethodDelegate1).GetAwaiter();
                        if (awaiter.IsCompleted)
                        {
                            goto Label_0090;
                        }
                        this.<>1__state = 0;
                        this.<>u__$awaiter3 = awaiter;
                        this.<>t__builder.AwaitUnsafeOnCompleted<TaskAwaiter, Program.<Async2>d__2>(ref awaiter, ref this);
                        flag = false;
                        return;
                }
                awaiter = this.<>u__$awaiter3;
                this.<>u__$awaiter3 = new TaskAwaiter();
                this.<>1__state = -1;
            Label_0090:
                awaiter.GetResult();
                awaiter = new TaskAwaiter();
                Console.WriteLine("ccc");
            }
            catch (Exception exception)
            {
                this.<>1__state = -2;
                this.<>t__builder.SetException(exception);
                return;
            }
        Label_00C5:
            this.<>1__state = -2;
            this.<>t__builder.SetResult();
        }

        [DebuggerHidden]
        private void SetStateMachine(IAsyncStateMachine param0)
        {
            this.<>t__builder.SetStateMachine(param0);
        }
    }

    public delegate int MyDelegate(int x);
}

Collapse Methods
 

发现async、await不见了,原来又是编译器级别提供的语法糖优化,所以说async不算是全新的异步模型。 可以理解为async更多的是线性执行步骤的一种回归,专门用来简化异步代码编写。
从反编译后的代码看出编译器新生成一个继承IAsyncStateMachine 的状态机结构asyncd(代码中叫<Async2>d__2,后面简写AsyncD),下面是基于反编译后的代码来分析的

IAsyncStateMachine最基本的状态机接口定义:

public interface IAsyncStateMachine
{
    void MoveNext();
    void SetStateMachine(IAsyncStateMachine stateMachine);
}

既然没有了async、await语法糖的阻碍,就可以把代码执行流程按线性顺序来理解,其整个执行步骤如下:

1. 主线程调用Async2()方法
2. Async2()方法内初始化状态机状态为-1,启动AsyncD
3. MoveNext方法内部开始执行,其task.run函数是把任务扔到线程池里,返回个可等待的任务句柄。MoveNext源码剖析:

//要执行任务的委托

 Program.CS$<>9__CachedAnonymousMethodDelegate1 = new Action(Program.<Async2>b__0);

//开始使用task做异步,是net4.0基于任务task的编程方式。

 awaiter =Task.Run(Program.CS$<>9__CachedAnonymousMethodDelegate1).GetAwaiter();

//设置状态为0,以便再次MoveNext直接break,执行switch后面的逻辑,典型的状态机模式。

this.<>1__state = 0;

//返回调用async2方法的线程,让其继续执行主线程后面的逻辑

this.<>t__builder.AwaitUnsafeOnCompleted<TaskAwaiter, Program.<Async2>d__2>(ref awaiter, ref this);
return;

4. 这时就已经有2个线程在跑了,分别是主线程和Task.Run在跑的任务线程。

5. 执行主线程后面逻辑输出aaa,任务线程运行完成后输出bbb、在继续执行任务线程后面的业务逻辑输出ccc。

Label_0090:
awaiter.GetResult();
awaiter = new TaskAwaiter();
Console.WriteLine("ccc");

这里可以理解为async把整个主线程同步逻辑,分拆成二块。 第一块是在主线程直接执行,第二块是在任务线程完成后执行, 二块中间是任务线程在跑,其源码中awaiter.GetResult()就是在等待任务线程完成后去执行第二块。 
从使用者角度来看执行步骤即为: 主线程A逻辑->异步任务线程B逻辑->主线程C逻辑。

        Test();
        Console.WriteLine("A逻辑");
        static async void Test()
        {
            await Task.Run(() => { Thread.Sleep(1000); Console.WriteLine("B逻辑"); });
            Console.WriteLine("C逻辑");
        }

回过头来对比下基本原理剖析小节中的虚构方法Async4(),发现区别在于一个是完成后回调,一个是等待完成后再执行,这也是实现异步最基本的两大类方式。

重点注意的地方

主线程A逻辑->异步任务线程B逻辑->主线程C逻辑。

注意:这3个步骤是有可能会使用同一个线程的,也可能会使用2个,甚至3个线程。 可以用Thread.CurrentThread.ManagedThreadId测试下得知。

     Async7();
     Console.WriteLine(Thread.CurrentThread.ManagedThreadId);
    static async void Async7()
    {
        await Task.Run(() =>
        {
            Console.WriteLine(Thread.CurrentThread.ManagedThreadId);
        });
        Console.WriteLine(Thread.CurrentThread.ManagedThreadId);
    }

正由于此,才会有言论说Async不用开线程,也有说需要开线程的,从单一方面来讲都是对的,也都是错的。 上面源码是从简分析的,具体async内部会涉及到线程上下文切换,线程复用、调度等。 想深入的同学可以研究下ExecutionContextSwitcher、 SecurityContext.RestoreCurrentWI、ExecutionContext这几个东东。

其实具体的物理线程细节可以不用太关心,知道其【主线程A逻辑->异步任务线程B逻辑->主线程C逻辑】这个基本原理即可。 另外Async也会有线程开销的,所以要合理分业务场景去使用。

总结

从逐渐剖析Async中发现,Net提供的异步方式基本上一脉相承的,如:
1. net4.5的Async,抛去语法糖就是Net4.0的Task+状态机。 
2. net4.0的Task, 退化到3.5即是(Thread、ThreadPool)+实现的等待、取消等API操作。

本文以async为起点,简单剖析了其内部原理及实现,希望对大家有所帮助。

时间: 2024-08-02 06:59:29

c#之Async、Await剖析的相关文章

探索c#之Async、Await剖析

阅读目录: 基本介绍 基本原理剖析 内部实现剖析 重点注意的地方 总结 基本介绍 Async.Await是net4.x新增的异步编程方式,其目的是为了简化异步程序编写,和之前APM方式简单对比如下. APM方式,BeginGetRequestStream需要传入回调函数,线程碰到BeginXXX时会以非阻塞形式继续执行下面逻辑,完成后回调先前传入的函数. HttpWebRequest myReq =(HttpWebRequest)WebRequest.Create("http://cnblogs

[.NET] 利用 async &amp; await 的异步编程

利用 async & await 的异步编程 [博主]反骨仔 [出处]http://www.cnblogs.com/liqingwen/p/5922573.html  目录 异步编程的简介 异步提高响应能力 更容易编写的异步方法 异步方法的控制流 线程 async 和 await 返回类型和参数信息 命名的约定 一.异步编程的简介 通过使用异步编程,你可以避免性能瓶颈并增强应用程序的总体响应能力. Visual Studio 2012 引入了一个简化的方法,异步编程,在 .NET Framewo

[C#] 走进异步编程的世界 - 开始接触 async/await(转)

原文链接:http://www.cnblogs.com/liqingwen/p/5831951.html 走进异步编程的世界 - 开始接触 async/await 序 这是学习异步编程的入门篇. 涉及 C# 5.0 引入的 async/await,但在控制台输出示例时经常会采用 C# 6.0 的 $"" 来拼接字符串,相当于string.Format() 方法. 目录 What's 异步? async/await 结构 What’s 异步方法? 一.What's 异步? 启动程序时,系

转走进异步编程的世界 - 开始接触 async/await

这是学习异步编程的入门篇. 涉及 C# 5.0 引入的 async/await,但在控制台输出示例时经常会采用 C# 6.0 的 $"" 来拼接字符串,相当于string.Format() 方法. 目录 What's 异步? async/await 结构 What's 异步方法? 一.What's 异步? 启动程序时,系统会在内存中创建一个新的进程.进程是构成运行程序资源的集合. 在进程内部,有称为线程的内核对象,它代表的是真正的执行程序.系统会在 Main 方法的第一行语句就开始线程

ASP.NET WebForm中用async/await实现异步出人意料的简单

1. 在.aspx中添加异步标记 <%@ Page Language="C#" Async="true"%> 2. 在.aspx.cs或者.ascx.cs(用户控件)中添加异步方法 private async Task GetMyPosts() { var posts = await ServiceFactory.BlogPostSevice.GetBlogPostsPagedAsync(); rpPosts.DataSource = posts; rp

Javascript中的async await

async / await是ES7的重要特性之一,也是目前社区里公认的优秀异步解决方案.目前,async / await这个特性已经是stage 3的建议,可以看看TC39的进度,本篇文章将分享async / await是如何工作的,阅读本文前,希望你具备Promise.generator.yield等ES6的相关知识. 在详细介绍async / await之前,先回顾下目前在ES6中比较好的异步处理办法.下面的例子中数据请求用Node.js中的request模块,数据接口采用Github v3

Async Await异步调用WebApi

先铺垫一些基础知识 在 .net 4.5中出现了 Async Await关键字,配合之前版本的Task 来使得开发异步程序更为简单易控. 在使用它们之前 我们先关心下 为什么要使用它们.好比 一个人做几件事,那他得一件一件的做完,而如果添加几个人手一起帮着做 很显然任务会更快的做好.这就是并行的粗浅含义. 在程序中,常见的性能瓶颈在于 NetWork I/O 瓶颈 , CPU 瓶颈, 数据库I/O瓶颈,这些瓶颈使得我们的程序运行的很慢,我们想办法去优化.因为并行开发本身就加重CPU负担,所以一般

C# async/await 使用总结

今天搞这两个关键字搞得有点晕,主要还是没有彻底理解其中的原理.   混淆了一个调用异步方法的概念: 在调用异步方法时,虽然方法返回一个 Task,但是其中的代码已经开始执行.该方法在调用时,即刻执行了一部分代码,直接最底层的 Async API 处才产生真正的异步操作,这时向上逐步返回,并最终使用一个 Task 来代表该异步任务. 当不使用 await 关键字时,该异步方法同样在异步执行.而使用 await 关键字后,只不过是对 Task(awaitable) 对象异步等待其执行结束,然后再同上

[Node] Catch error for async await

When we try to do MongoDB opration, mongoose return Promise, we can use async/await to simply the code: const mongoose = require('mongoose'); const Store = mongoose.model('Store'); exports.createStore = async (req, res) => { const store = new Store(r