Ultra-QuickSort
Time Limit: 7000MS | Memory Limit: 65536K | |
Total Submissions: 40827 | Accepted: 14752 |
Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is
sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence
element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
求冒泡排序交换的次数。
由于这些数可能太大,且差距很大,所以离散化一下,然后求一下逆序数,边查询边插入边即可。
//32684K 1579MS #include<stdio.h> #include<string.h> #include<algorithm> #define M 500007 #define ll __int64 using namespace std; int s[M],n; struct Tree { int l,r,mid; ll val; }tree[M<<1]; struct sa { int id; ll val; }p[M*2]; int cmp(sa a,sa b) { return a.val>b.val; } void build(int left,int right,int i) { tree[i].l=left;tree[i].r=right;tree[i].mid=(left+right)>>1;tree[i].val=0; if(left==right){return;} build(left,tree[i].mid,i*2); build(tree[i].mid+1,right,i*2+1); } int query(int x,int i) { if(tree[i].l==tree[i].r)return tree[i].val; if(x<=tree[i].mid)return query(x,i*2)+tree[i].val; else return query(x,i*2+1)+tree[i].val; } void insert(int left,int right,int i) { if(tree[i].l==left&&tree[i].r==right){tree[i].val++;return;} if(right<=tree[i].mid)insert(left,right,2*i); else if(left>tree[i].mid)insert(left,right,2*i+1); else {insert(left,tree[i].mid,i*2);insert(tree[i].mid+1,right,i*2+1);} } void discretization() { int tmp=p[1].val,pos=1; for(int i=1;i<=n;i++) if(p[i].val!=tmp)p[i].val=++pos,tmp=p[i].val; else p[i].val=pos; for(int i=1;i<=n;i++) s[p[i].id]=p[i].val; } int main() { while(scanf("%d",&n)&&n) { ll ans=0; build(0,M,1); memset(s,0,sizeof(s)); for(int i=1;i<=n;i++) { scanf("%I64d",&p[i].val); p[i].id=i; } sort(p+1,p+n+1,cmp); discretization(); for(int i=1;i<=n;i++) printf("%d ",s[i]); printf("\n"); for(int i=1;i<=n;i++) { ans+=query(s[i],1); insert(s[i],M,1); } printf("%I64d\n",ans); } return 0; }
POJ 2299 离散化线段树,布布扣,bubuko.com