k-d tree算法详解

k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构。主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索)。

1、应用背景

  SIFT算法中做特征点匹配的时候就会利用到k-d树。而特征点匹配实际上就是一个通过距离函数在高维矢量之间进行相似性检索的问题。针对如何快速而准确地找到查询点的近邻,现在提出了很多高维空间索引结构和近似查询的算法,k-d树就是其中一种。

  索引结构中相似性查询有两种基本的方式:一种是范围查询(range searches),另一种是K近邻查询(K-neighbor searches)。范围查询就是给定查询点和查询距离的阈值,从数据集中找出所有与查询点距离小于阈值的数据;K近邻查询是给定查询点及正整数K,从数据集中找到距离查询点最近的K个数据,当K=1时,就是最近邻查询(nearest neighbor searches)。

  特征匹配算子大致可以分为两类。一类是线性扫描法,即将数据集中的点与查询点逐一进行距离比较,也就是穷举,缺点很明显,就是没有利用数据集本身蕴含的任何结构信息,搜索效率较低,第二类是建立数据索引,然后再进行快速匹配。因为实际数据一般都会呈现出簇状的聚类形态,通过设计有效的索引结构可以大大加快检索的速度。索引树属于第二类,其基本思想就是对搜索空间进行层次划分。根据划分的空间是否有混叠可以分为Clipping和Overlapping两种。前者划分空间没有重叠,其代表就是k-d树;后者划分空间相互有交叠,其代表为R树。(这里只介绍k-d树)

2、实例

  先以一个简单直观的实例来介绍k-d树算法。假设有6个二维数据点{(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},数据点位于二维空间内(如图1中黑点所示)。k-d树算法就是要确定图1中这些分割空间的分割线(多维空间即为分割平面,一般为超平面)。下面就要通过一步步展示k-d树是如何确定这些分割线的。

图1  二维数据k-d树空间划分示意图

  k-d树算法可以分为两大部分,一部分是有关k-d树本身这种数据结构建立的算法,另一部分是在建立的k-d树上如何进行最邻近查找的算法。

3、k-d树构建算法

  k-d树是一个二叉树,每个节点表示一个空间范围。表1给出的是k-d树每个节点中主要包含的数据结构。

表1  k-d树中每个节点的数据类型

域名 数据类型 描述
Node-data 数据矢量 数据集中某个数据点,是n维矢量(这里也就是k维)
Range 空间矢量 该节点所代表的空间范围
split 整数 垂直于分割超平面的方向轴序号
Left k-d树 由位于该节点分割超平面左子空间内所有数据点所构成的k-d树
Right k-d树 由位于该节点分割超平面右子空间内所有数据点所构成的k-d树
parent k-d树 父节点

  从上面对k-d树节点的数据类型的描述可以看出构建k-d树是一个逐级展开的递归过程。表2给出的是构建k-d树的伪码。

表2  构建k-d树的伪码

算法:构建k-d树(createKDTree)
输入:数据点集Data-set和其所在的空间Range
输出:Kd,类型为k-d tree
1.If Data-set为空,则返回空的k-d tree

2.调用节点生成程序:

  (1)确定split域:对于所有描述子数据(特征矢量),统计它们在每个维上的数据方差。以SURF特征为例,描述子为64维,可计算64个方差。挑选出最大值,对应的维就是split域的值。数据方差大表明沿该坐标轴方向上的数据分散得比较开,在这个方向上进行数据分割有较好的分辨率;

  (2)确定Node-data域:数据点集Data-set按其第split域的值排序。位于正中间的那个数据点被选为Node-data。此时新的Data-set‘ = Data-set\Node-data(除去其中Node-data这一点)。


3.dataleft = {d属于Data-set‘ && d[split] ≤ Node-data[split]}

Left_Range = {Range && dataleft}

dataright = {d属于Data-set‘ && d[split] > Node-data[split]}

Right_Range = {Range && dataright}


4.left = 由(dataleft,Left_Range)建立的k-d tree,即递归调用createKDTree(dataleft,Left_

Range)。并设置left的parent域为Kd;

right = 由(dataright,Right_Range)建立的k-d tree,即调用createKDTree(dataleft,Left_

Range)。并设置right的parent域为Kd。

  以上述举的实例来看,过程如下:

  由于此例简单,数据维度只有2维,所以可以简单地给x,y两个方向轴编号为0,1,也即split={0,1}。

  (1)确定split域的首先该取的值。分别计算x,y方向上数据的方差得知x方向上的方差最大,所以split域值首先取0,也就是x轴方向;

  (2)确定Node-data的域值。根据x轴方向的值2,5,9,4,8,7排序选出中值为7,所以Node-data = (7,2)。这样,该节点的分割超平面就是通过(7,2)并垂直于split = 0(x轴)的直线x = 7;

  (3)确定左子空间和右子空间。分割超平面x = 7将整个空间分为两部分,如图2所示。x < =  7的部分为左子空间,包含3个节点{(2,3),(5,4),(4,7)};另一部分为右子空间,包含2个节点{(9,6),(8,1)}。

图2  x=7将整个空间分为两部分

  如算法所述,k-d树的构建是一个递归的过程。然后对左子空间和右子空间内的数据重复根节点的过程就可以得到下一级子节点(5,4)和(9,6)(也就是左右子空间的‘根‘节点),同时将空间和数据集进一步细分。如此反复直到空间中只包含一个数据点,如图1所示。最后生成的k-d树如图3所示。

图3  上述实例生成的k-d树

  注意:每一级节点旁边的‘x‘和‘y‘表示以该节点分割左右子空间时split所取的值。

4、k-d树上的最邻近查找算法

  在k-d树中进行数据的查找也是特征匹配的重要环节,其目的是检索在k-d树中与查询点距离最近的数据点。这里先以一个简单的实例来描述最邻近查找的基本思路。

  星号表示要查询的点(2.1,3.1)。通过二叉搜索,顺着搜索路径很快就能找到最邻近的近似点,也就是叶子节点(2,3)。而找到的叶子节点并不一定就是最邻近的,最邻近肯定距离查询点更近,应该位于以查询点为圆心且通过叶子节点的圆域内。为了找到真正的最近邻,还需要进行‘回溯‘操作:算法沿搜索路径反向查找是否有距离查询点更近的数据点。此例中先从(7,2)点开始进行二叉查找,然后到达(5,4),最后到达(2,3),此时搜索路径中的节点为<(7,2),(5,4),(2,3)>,首先以(2,3)作为当前最近邻点,计算其到查询点(2.1,3.1)的距离为0.1414,然后回溯到其父节点(5,4),并判断在该父节点的其他子节点空间中是否有距离查询点更近的数据点。以(2.1,3.1)为圆心,以0.1414为半径画圆,如图4所示。发现该圆并不和超平面y = 4交割,因此不用进入(5,4)节点右子空间中去搜索。

图4  查找(2.1,3.1)点的两次回溯判断

  再回溯到(7,2),以(2.1,3.1)为圆心,以0.1414为半径的圆更不会与x = 7超平面交割,因此不用进入(7,2)右子空间进行查找。至此,搜索路径中的节点已经全部回溯完,结束整个搜索,返回最近邻点(2,3),最近距离为0.1414。

  一个复杂点了例子如查找点为(2,4.5)。同样先进行二叉查找,先从(7,2)查找到(5,4)节点,在进行查找时是由y = 4为分割超平面的,由于查找点为y值为4.5,因此进入右子空间查找到(4,7),形成搜索路径<(7,2),(5,4),(4,7)>,取(4,7)为当前最近邻点,计算其与目标查找点的距离为3.202。然后回溯到(5,4),计算其与查找点之间的距离为3.041。以(2,4.5)为圆心,以3.041为半径作圆,如图5所示。可见该圆和y = 4超平面交割,所以需要进入(5,4)左子空间进行查找。此时需将(2,3)节点加入搜索路径中得<(7,2),(2,3)>。回溯至(2,3)叶子节点,(2,3)距离(2,4.5)比(5,4)要近,所以最近邻点更新为(2,3),最近距离更新为1.5。回溯至(7,2),以(2,4.5)为圆心1.5为半径作圆,并不和x = 7分割超平面交割,如图6所示。至此,搜索路径回溯完。返回最近邻点(2,3),最近距离1.5。k-d树查询算法的伪代码如表3所示。

图5  查找(2,4.5)点的第一次回溯判断

图6  查找(2,4.5)点的第二次回溯判断

表3  标准k-d树查询算法

算法:k-d树最邻近查找

输入:Kd,    //k-d tree类型

target  //查询数据点


输出:nearest, //最邻近数据点

dist      //最邻近数据点和查询点间的距离

1. If Kd为NULL,则设dist为infinite并返回

2. //进行二叉查找,生成搜索路径

Kd_point = &Kd;                   //Kd-point中保存k-d tree根节点地址

nearest = Kd_point -> Node-data;  //初始化最近邻点

while(Kd_point)

  push(Kd_point)到search_path中; //search_path是一个堆栈结构,存储着搜索路径节点指针

/*** If Dist(nearest,target) > Dist(Kd_point -> Node-data,target)

    nearest  = Kd_point -> Node-data;    //更新最近邻点

    Max_dist = Dist(Kd_point,target);  //更新最近邻点与查询点间的距离  ***/

  s = Kd_point -> split;                       //确定待分割的方向

  If target[s] <= Kd_point -> Node-data[s]     //进行二叉查找

    Kd_point = Kd_point -> left;

  else

    Kd_point = Kd_point ->right;

nearest = search_path中最后一个叶子节点; //注意:二叉搜索时不比计算选择搜索路径中的最邻近点,这部分已被注释

Max_dist = Dist(nearest,target);    //直接取最后叶子节点作为回溯前的初始最近邻点


3. //回溯查找

while(search_path != NULL)

  back_point = 从search_path取出一个节点指针;   //从search_path堆栈弹栈

  s = back_point -> split;                   //确定分割方向

  If Dist(target[s],back_point -> Node-data[s]) < Max_dist   //判断还需进入的子空间

    If target[s] <= back_point -> Node-data[s]

      Kd_point = back_point -> right;  //如果target位于左子空间,就应进入右子空间

    else

      Kd_point = back_point -> left;    //如果target位于右子空间,就应进入左子空间

    将Kd_point压入search_path堆栈;

  If Dist(nearest,target) > Dist(Kd_Point -> Node-data,target)

    nearest  = Kd_point -> Node-data;                 //更新最近邻点

    Min_dist = Dist(Kd_point -> Node-data,target);  //更新最近邻点与查询点间的距离

  上述两次实例表明,当查询点的邻域与分割超平面两侧空间交割时,需要查找另一侧子空间,导致检索过程复杂,效率下降。研究表明N个节点的K维k-d树搜索过程时间复杂度为:tworst=O(kN1-1/k)。

5、后记

  以上为了介绍方便,讨论的是二维情形。像实际的应用中,如SIFT特征矢量128维,SURF特征矢量64维,维度都比较大,直接利用k-d树快速检索(维数不超过20)的性能急剧下降。假设数据集的维数为D,一般来说要求数据的规模N满足N»2D,才能达到高效的搜索。所以这就引出了一系列对k-d树算法的改进。有待进一步研究学习。

6、参考

  1.《图像局部不变特性特征与描述》王永明 王贵锦 编著 国防工业出版社

  2.http://underthehood.blog.51cto.com/2531780/687160

7、来源

  转载:http://www.cnblogs.com/eyeszjwang/articles/2429382.html

时间: 2024-10-25 23:09:37

k-d tree算法详解的相关文章

Merkle Tree算法详解

转载自:http://blog.csdn.net/yuanrxdu/article/details/22474697Merkle Tree是Dynamo中用来同步数据一致性的算法,Merkle Tree是基于数据HASH构建的一个树.它具有以下几个特点: 1.数据结构是一个树,可以是二叉树,也可以是多叉树(本BLOG以二叉树来分析) 2.Merkle Tree的叶子节点的value是数据集合的单元数据或者单元数据HASH. 3.Merke Tree非叶子节点value是其所有子节点value的H

机器学习经典算法详解及Python实现--聚类及K均值、二分K-均值聚类算法

摘要 聚类是一种无监督的学习(无监督学习不依赖预先定义的类或带类标记的训练实例),它将相似的对象归到同一个簇中,它是观察式学习,而非示例式的学习,有点像全自动分类.说白了,聚类(clustering)是完全可以按字面意思来理解的--将相同.相似.相近.相关的对象实例聚成一类的过程.机器学习中常见的聚类算法包括 k-Means算法.期望最大化算法(Expectation Maximization,EM,参考"EM算法原理").谱聚类算法(参考机器学习算法复习-谱聚类)以及人工神经网络算法

安全体系(三)——SHA1算法详解

本文主要讲述使用SHA1算法计算信息摘要的过程. 安全体系(零)—— 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(一)—— DES算法详解 安全体系(二)——RSA算法详解 为保证传输信息的安全,除了对信息加密外,还需要对信息进行认证.认证的目的有两:一是验证信息的发送者是合法的,二是验证信息的完整性.Hash函数就是进行信息认证的一种有效手段. 1.Hash函数和消息完整性 Hash函数也称为杂凑函数或散列函数,函数输入为一可变长度x,输出为一固定长度串,该串被称为输入x

【转】AC算法详解

原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和Margaret J.Corasick于1974年提出(与KMP算法同年)的一个经典的多模式匹配算法,可以保证对于给定的长度为n的文本,和模式集合P{p1,p2,...pm},在O(n)时间复杂度内,找到文本中的所有目标模式,而与模式集合的规模m无关.正如KMP算法在单模式匹配方面的突出贡献一样,AC算法对于

支持向量机(SVM)(五)-- SMO算法详解

一.我们先回顾下SVM问题. A.线性可分问题 1.SVM基本原理: SVM使用一种非线性映射,把原训练            数据映射到较高的维.在新的维上,搜索最佳分离超平面,两个类的数据总可以被超平面分开. 2.问题的提出: 3.如何选取最优的划分直线f(x)呢? 4.求解:凸二次规划 建立拉格朗日函数: 求偏导数: B.线性不可分问题 1.核函数 如下图:横轴上端点a和b之间红色部分里的所有点定为正类,两边的黑色部分里的点定为负类. 设: g(x)转化为f(y)=<a,y> g(x)=

Tarjan算法详解

Tarjan算法详解 [概念] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. [功能] Tarjan算法的用途之一是,求一个有向图G=(V,E)里极大强连

机器学习经典算法详解及Python实现---朴素贝叶斯分类及其在文本分类、垃圾邮件检测中的应用

摘要: 朴素贝叶斯分类是贝叶斯分类器的一种,贝叶斯分类算法是统计学的一种分类方法,利用概率统计知识进行分类,其分类原理就是利用贝叶斯公式根据某对象的先验概率计算出其后验概率(即该对象属于某一类的概率),然后选择具有最大后验概率的类作为该对象所属的类.总的来说:当样本特征个数较多或者特征之间相关性较大时,朴素贝叶斯分类效率比不上决策树模型:当各特征相关性较小时,朴素贝叶斯分类性能最为良好.另外朴素贝叶斯的计算过程类条件概率等计算彼此是独立的,因此特别适于分布式计算.本文详述了朴素贝叶斯分类的统计学

安全体系(二)——RSA算法详解

本文主要讲述RSA算法使用的基本数学知识.秘钥的计算过程以及加密和解密的过程. 安全体系(零)—— 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(一)—— DES算法详解 1.概述 RSA公钥加密算法是1977年由罗纳德·李维斯特(Ron Rivest).阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的.1987年首次公布,当时他们三人都在麻省理工学院工作.RSA算法以他们三人姓氏开头字母命名. RSA是目前最有影响力的公钥加密

机器学习经典算法详解及Python实现--基于SMO的SVM分类器

原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector machine,简称SVM.通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解. (一)理解SVM基本原理 1,SVM的本质--分类 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些