题目:
Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn‘t one, return
0 instead.
For example, given the array [2,3,1,2,4,3]
and s
,
= 7
the subarray [4,3]
has the minimal length under the problem constraint.
分析:一开始我采用的是LIS(longest increased sequence)中的最长递增子序列中的动态规划的思想,能通过,但是时间复杂度为O(N
^2);;;第二种方法是采用双指针+滑动窗口的思想,时间复杂度为O(N), 严格意义上说是2N,,比如 [1,2,3,15,3,4,5,15] s=14,,,只有在15处将前面的元素又重新加了一遍,故为2N
代码:
class Solution { public: // 法一 /*int minSubArrayLen(int s, vector<int>& nums) { int result = nums.size(); bool flag = false; for(int i = 0; i < nums.size(); i++){ if(nums[i] >= s) return 1; int sum = nums[i]; for(int j = i-1; j >= 0; j--){ sum += nums[j]; if(sum >= s){ result = min(result, i-j+1); flag = true; break; } } } if(flag)return result; return 0; }*/ int minSubArrayLen(int s, vector<int>& nums) { // 滑动窗口的形式+双指针 int result = nums.size()+1; int frontPoint = 0, sum = 0; for(int i = 0; i < nums.size(); i++){ sum += nums[i]; while(sum >= s){ result = min(result, i - frontPoint + 1); sum -= nums[frontPoint++]; } } return result == (nums.size()+1) ? 0:result; } };
时间: 2024-11-05 12:08:17