对角化

  • 不同特征值所定义的特征子空间的和是直和
  1. 直和===子空间的一组基可以成为原空间的一组基
  2. 直和===零向量是分解唯一的
  3. 不同的特征值所求出的特征向量一定是线性无关的(有一个特征值至少可以求出一个非零的特征向量,在特征子空间里取出一个特征向量)




定义线性变换可以对角化:线性变换有n个不同(线性无关的)的特征向量

推理::::判断一个矩阵/线性变换是否可以对角化的充分条件(不是必要条件):线性变换有n个不同的特征值(线性变换的特征多项式没有重根)

推理::::线性变换的所有特征值的所对对应的特征子空间:先对角化当且仅当-----特征子空间的直和等于全空间(子空间的一组基可以拼接在一起等于全空间的一组基)

-------------------------------------------------------(同一个特征子空间的特征基向量一定的线性无关,而又证明不同的特征值的特征向量也是线性无关,故定理等价为定义(存在n个不同(线性无关的)的特征向量))

推理:可对角化的判定

λ是特征值,V是特征子空间------V的重数

代数重数:特征值作为特征多项式的根的重数(代数方程)

几何重数:(特征子空间的维数)

对任何的特征值而言----------其几何重数小于等于其代数重数

  • 子空间的一组基一定可以扩张为原空间的一组基

完全的特征向量系(一个线性变换/一个矩阵)对于其任何一个特征值,其几何重数等于其代数重数,则称矩阵有完全的特征向量系

  • 线性变换可对角化则称线性变换有完全的特征向量系(充分必要条件)




不同特征值的特征子空间的和都是直和但不一定等于全空间

  • 可对角化的应用:



可对角化的集合原型:就是对于线性变换可以找到一组基,使线性变换可以在某一组基下的表示矩阵等于对角矩阵,

则问题出现是否可以对角化,对角线的值,基过渡矩阵

P-1AP=寻找相似的对角矩阵

P是不唯一的------------------------------------------如何判断是否可对角化并且求出P--------几何重数与代数重数是否是相等的





可对角化矩阵的幂

特征子空间的维数----------解空间的维数-------λI-A的矩阵的秩

  1. 可对角化相对于不可对角化举证来说是多得多
时间: 2024-07-29 20:19:53

对角化的相关文章

5.4 实对称矩阵的对角化

本节我们介绍一类必可对角化,且相似变换矩阵可取为正交矩阵的矩阵,即实对称矩阵. 定理1   $n$阶实对称矩阵的特征值为实数. 提示: $Ax=\lambda x, \bar\lambda \bar{x} = \bar{Ax}=\bar{A}\bar{x}=A\bar{x}$, 从而$\bar{x}^T A^{T}=\bar{x}^T A=\bar\lambda \bar{x}^T$, 所以$$\lambda\bar{x}^Tx=\bar{x}^T Ax=\bar\lambda\bar{x}^T

矩阵对角化

numerical recipe 里一共讲了两种实数对称矩阵的对角化, jacobi法 tred2生成上三角阵以后用tqli对角化 前者稳定但慢易并行,后者较快但疑似不稳定,串行. 花了一下午,一点点调试终于知道了第二种方法不稳定的原因在哪里 1 SUBROUTINE tred2(a,d,e,novectors) 2 USE nrtype; USE nrutil, ONLY : assert_eq,outerprod 3 IMPLICIT NONE 4 REAL(SP), DIMENSION(:

Codeforces 947E Perpetual Subtraction (线性代数、矩阵对角化、DP)

手动博客搬家: 本文发表于20181212 09:37:21, 原地址https://blog.csdn.net/suncongbo/article/details/84962727 呜啊怎么又是数学了啊...数学比例\(\frac{16}{33}=0.4848\) orz yhx-12243神仙 题目链接: https://codeforces.com/contest/947/problem/E 题意: 有一个\([0,n]\)的随机数\(x\)初始为\(i\)的概率为\(p_i\). \(m

特征值、特征向量、相似矩阵,矩阵对角化的意义

1.相似矩阵 在线性代数中,相似矩阵是指存在相似关系的矩阵.设A,B为n阶矩阵,如果有n阶可逆矩阵P存在,使得P^(-1)AP=B,则称矩阵A与B相似,记为A~B 相似矩阵有以下性质: 对于 设A,B和C是任意同阶方阵,则有: (1)反身性:A~ A (2)对称性:若A~ B,则 B~ A (3)传递性:若A~ B,B~ C,则A~ C (4)若A~ B,则r(A)=r(B),|A|=|B|,tr(A)=tr(B). (5)若A~ B,且A可逆,则B也可逆,且B~ A. (6)若A~ B,则A与

怎么判断矩阵中的方阵可以对角化

zh.wikipedia.org/wiki/特征值和特征向量 计算矩阵的特征值和特征向量[编辑] 假设我们想要计算给定矩阵的特征值.若矩阵很小,我们可以用特征多项式进行符号演算.但是,对于大型矩阵这通常是不可行的,在那种情况我们必须采用数值方法.

线性方程组之迭代法篇

不管哪一种数值算法,其设计原理都是将复杂转化为简单的重复,或者说,通过简单的重复生成复杂,在算法设计和算法实现过程中,重复就是力量[1].                                 ----题记 一般地,线性方程组可以表达为                                                                                   Ax = b其中,A称为系数矩阵,b称为右端项,x为待求的未知数向量.       迭代

[降维] PCA 主成分分析

其实早该整理一下PCA了,怎奈一直没有时间,可能是自己对时间没有把握好吧,下面进入正题. 降维的概念 所谓降维,就是降低数据的维数.在机器学习中尤其常见,之前做过对一幅图片提取小波特征,对于一幅大小为800*600的图片,如果每个点提取五个尺度.八个方向的特征,那么每一个像素点提取40个特征,那么一副图片的话就是40*800*600=19200000个特征.也就是我们用一个19200000的向量描述一幅图片.如果有m幅图片,那么特征为m*19200000的大小.显然这个维数太大了,所以需要降维.

复旦大学2016--2017学年第二学期(16级)高等代数II期末考试第七大题解答

七.(本题10分)  设 $n$ 阶复方阵 $A$ 的特征多项式为 $f(\lambda)$, 复系数多项式 $g(\lambda)$ 满足 $(f(\lambda),g'(\lambda))=1$. 证明: $A$ 可对角化的充要条件是 $g(A)$ 可对角化. 证明  先证必要性. 设 $A$ 可对角化, 即存在非异阵 $P$, 使得 $P^{-1}AP=\Lambda=\mathrm{diag}\{\lambda_1,\lambda_2,\cdots,\lambda_n\}$ 为对角阵,

PCA原理(转)

PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在