Spark版本定制第5天:案列解析Spark Streaming运行源码

本期内容:

1 在线动态计算分类最热门商品案例回顾与演示

2 基于案例贯通Spark Streaming的运行源码

  一切不能进行实时流处理的数据都是无效的数据。在流处理时代,SparkStreaming有着强大吸引力,而且发展前景广阔,加之Spark的生态系统,Streaming可以方便调用其他的诸如SQL,MLlib等强大框架,它必将一统天下。

  Spark Streaming运行时与其说是Spark Core上的一个流式处理框架,不如说是Spark Core上的一个最复杂的应用程序。如果可以掌握Spark streaming这个复杂的应用程序,那么其他的再复杂的应用程序都不在话下了。这里选择Spark Streaming作为版本定制的切入点也是大势所趋。

  第一部分:案例赏析

package com.dt.spark.sparkstreaming

import com.robinspark.utils.ConnectionPool
import org.apache.spark.SparkConf
import org.apache.spark.sql.Row
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.streaming.{Seconds, StreamingContext}

/**
  * 使用Spark Streaming+Spark SQL来在线动态计算电商中不同类别中最热门的商品排名,例如手机这个类别下面最热门的三种手机、电视这个类别
  * 下最热门的三种电视,该实例在实际生产环境下具有非常重大的意义;
  *
  * @author DT大数据梦工厂
  * 新浪微博:http://weibo.com/ilovepains/
  *
  *
  *   实现技术:Spark Streaming+Spark SQL,之所以Spark Streaming能够使用ML、sql、graphx等功能是因为有foreachRDD和Transform
  * 等接口,这些接口中其实是基于RDD进行操作,所以以RDD为基石,就可以直接使用Spark其它所有的功能,就像直接调用API一样简单。
  *  假设说这里的数据的格式:user item category,例如Rocky Samsung Android
  */
object OnlineTheTop3ItemForEachCategory2DB {
  def main(args: Array[String]){
    /**
      * 第1步:创建Spark的配置对象SparkConf,设置Spark程序的运行时的配置信息,
     */
    val conf = new SparkConf() //创建SparkConf对象
    conf.setAppName("OnlineTheTop3ItemForEachCategory2DB") //设置应用程序的名称,在程序运行的监控界面可以看到名称
    conf.setMaster("spark://Master:7077") //此时,程序在Spark集群
    //conf.setMaster("local[2]")
    //设置batchDuration时间间隔来控制Job生成的频率并且创建Spark Streaming执行的入口
    val ssc = new StreamingContext(conf, Seconds(5))

    ssc.checkpoint("/root/Documents/SparkApps/checkpoint")

    val userClickLogsDStream = ssc.socketTextStream("Master", 9999)

    val formattedUserClickLogsDStream = userClickLogsDStream.map(clickLog =>
        (clickLog.split(" ")(2) + "_" + clickLog.split(" ")(1), 1))

//    val categoryUserClickLogsDStream = formattedUserClickLogsDStream.reduceByKeyAndWindow((v1:Int, v2: Int) => v1 + v2,
//      (v1:Int, v2: Int) => v1 - v2, Seconds(60), Seconds(20))

    val categoryUserClickLogsDStream = formattedUserClickLogsDStream.reduceByKeyAndWindow(_+_,
      _-_, Seconds(60), Seconds(20))

    categoryUserClickLogsDStream.foreachRDD { rdd => {
      if (rdd.isEmpty()) {
        println("No data inputted!!!")
      } else {
        val categoryItemRow = rdd.map(reducedItem => {
          val category = reducedItem._1.split("_")(0)
          val item = reducedItem._1.split("_")(1)
          val click_count = reducedItem._2
          Row(category, item, click_count)
        })

        val structType = StructType(Array(
          StructField("category", StringType, true),
          StructField("item", StringType, true),
          StructField("click_count", IntegerType, true)
        ))

        val hiveContext = new HiveContext(rdd.context)
        val categoryItemDF = hiveContext.createDataFrame(categoryItemRow, structType)

        categoryItemDF.registerTempTable("categoryItemTable")

        val reseltDataFram = hiveContext.sql("SELECT category,item,click_count FROM (SELECT category,item,click_count,row_number()" +
          " OVER (PARTITION BY category ORDER BY click_count DESC) rank FROM categoryItemTable) subquery " +
          " WHERE rank <= 3")
        reseltDataFram.show()

        val resultRowRDD = reseltDataFram.rdd

        resultRowRDD.foreachPartition { partitionOfRecords => {

          if (partitionOfRecords.isEmpty){
            println("This RDD is not null but partition is null")
          } else {
            // ConnectionPool is a static, lazily initialized pool of connections
            val connection = ConnectionPool.getConnection()
            partitionOfRecords.foreach(record => {
              val sql = "insert into categorytop3(category,item,client_count) values(‘" + record.getAs("category") + "‘,‘" +
                record.getAs("item") + "‘," + record.getAs("click_count") + ")"
              val stmt = connection.createStatement();
              stmt.executeUpdate(sql);

            })
            ConnectionPool.returnConnection(connection) // return to the pool for future reuse

          }
        }
        }
      }
    }
    }
    /**
      * 在StreamingContext调用start方法的内部其实是会启动JobScheduler的Start方法,进行消息循环,在JobScheduler
      * 的start内部会构造JobGenerator和ReceiverTacker,并且调用JobGenerator和ReceiverTacker的start方法:
      *   1,JobGenerator启动后会不断的根据batchDuration生成一个个的Job
      *   2,ReceiverTracker启动后首先在Spark Cluster中启动Receiver(其实是在Executor中先启动ReceiverSupervisor),在Receiver收到
      *   数据后会通过ReceiverSupervisor存储到Executor并且把数据的Metadata信息发送给Driver中的ReceiverTracker,在ReceiverTracker
      *   内部会通过ReceivedBlockTracker来管理接受到的元数据信息
      * 每个BatchInterval会产生一个具体的Job,其实这里的Job不是Spark Core中所指的Job,它只是基于DStreamGraph而生成的RDD
      * 的DAG而已,从Java角度讲,相当于Runnable接口实例,此时要想运行Job需要提交给JobScheduler,在JobScheduler中通过线程池的方式找到一个
      * 单独的线程来提交Job到集群运行(其实是在线程中基于RDD的Action触发真正的作业的运行),为什么使用线程池呢?
      *   1,作业不断生成,所以为了提升效率,我们需要线程池;这和在Executor中通过线程池执行Task有异曲同工之妙;
      *   2,有可能设置了Job的FAIR公平调度的方式,这个时候也需要多线程的支持;
      *
      */
    ssc.start()
    ssc.awaitTermination()
  }
}

  第二部分源码解析

  1. 根据SparkConf配置信息创建StreamingContext对象

private[streaming] def createNewSparkContext(conf: SparkConf): SparkContext = {
  new SparkContext(conf)
}

  由此可见,SparkStreaming确实就是Spark Core上一个复杂的特殊的应用程序。

  2. 做checkpint持久化

ssc.checkpoint("/root/Documents/SparkApps/checkpoint")

  3. 创建Socket 获取输入流

def socketTextStream(
    hostname: String,
    port: Int,
    storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2
  ): ReceiverInputDStream[String] = withNamedScope("socket text stream") {
  socketStream[String](hostname, port, SocketReceiver.bytesToLines, storageLevel)
}

  4.构建Receiver来接收数据(SocketInputDstream继承自ReceiverInputDStream)

private[streaming]
class SocketInputDStream[T: ClassTag](
    ssc_ : StreamingContext,
    host: String,
    port: Int,
    bytesToObjects: InputStream => Iterator[T],
    storageLevel: StorageLevel
  ) extends ReceiverInputDStream[T](ssc_) {

  def getReceiver(): Receiver[T] = {
    new SocketReceiver(host, port, bytesToObjects, storageLevel)
  }
}
abstract class ReceiverInputDStream[T: ClassTag](ssc_ : StreamingContext)
  extends InputDStream[T](ssc_) {

  5. SocketServer对象调用Receive获取网络数据

def receive() {
    var socket: Socket = null
    try {
      logInfo("Connecting to " + host + ":" + port)
      socket = new Socket(host, port)
      logInfo("Connected to " + host + ":" + port)
      val iterator = bytesToObjects(socket.getInputStream())
      while(!isStopped && iterator.hasNext) {
        store(iterator.next)
      }
      if (!isStopped()) {
        restart("Socket data stream had no more data")
      } else {
        logInfo("Stopped receiving")
      }   }catch{    case e:java.net.ConnectException =>      restart("Error connecting to " + host + ":" + port, e)      case NonFatal(e) =>        logWarning("Error receiving data", e)     restart("Error receiving data", e)      }finally{      if (socket != null){       socket.close()      logInfo("Closed socket to " + host + ":" +port)       }    } }

  6 . DStream根据时间间隔生成RDD,放到hashMap中

  // RDDs generated, marked as private[streaming] so that testsuites can access it
  @transient
  private[streaming] var generatedRDDs = new HashMap[Time, RDD[T]] ()

  7. DStream经过一系列Transformation操作,在ForEachDStream中生成job

private[streaming]
class ForEachDStream[T: ClassTag] (
    parent: DStream[T],
    foreachFunc: (RDD[T], Time) => Unit,
    displayInnerRDDOps: Boolean
  ) extends DStream[Unit](parent.ssc) {

  override def dependencies: List[DStream[_]] = List(parent)

  override def slideDuration: Duration = parent.slideDuration

  override def compute(validTime: Time): Option[RDD[Unit]] = None

  override def generateJob(time: Time): Option[Job] = {
    parent.getOrCompute(time) match {
      case Some(rdd) =>
        val jobFunc = () => createRDDWithLocalProperties(time, displayInnerRDDOps) {
          foreachFunc(rdd, time)
        }
        Some(new Job(time, jobFunc))
      case None => None
    }
  }
}

  8. JobScheduler进行调度(ssc.start())

  def start(): Unit = synchronized {
    if (eventLoop != null) return // scheduler has already been started

    logDebug("Starting JobScheduler")
    eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") {
      override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event)

      override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e)
    }
    eventLoop.start()

    // attach rate controllers of input streams to receive batch completion updates
    for {
      inputDStream <- ssc.graph.getInputStreams
      rateController <- inputDStream.rateController
    } ssc.addStreamingListener(rateController)

    listenerBus.start(ssc.sparkContext)
    receiverTracker = new ReceiverTracker(ssc)
    inputInfoTracker = new InputInfoTracker(ssc)
    receiverTracker.start()
    jobGenerator.start()
    logInfo("Started JobScheduler")
  }

  9.EventLoop(开启新线程进行消息循环)

 private val eventThread = new Thread(name) {
    setDaemon(true)

  10 processEvent(作业启动,完成和失败的解决方式)

private def processEvent(event: JobSchedulerEvent) {
    try {
      event match {
        case JobStarted(job, startTime) => handleJobStart(job, startTime)
        case JobCompleted(job, completedTime) => handleJobCompletion(job, completedTime)
        case ErrorReported(m, e) => handleError(m, e)
      }
    } catch {
      case e: Throwable =>
        reportError("Error in job scheduler", e)
    }
  }

  11 runDummySparkJob

 private def runDummySparkJob(): Unit = {
    if (!ssc.sparkContext.isLocal) {
      ssc.sparkContext.makeRDD(1 to 50, 50).map(x => (x, 1)).reduceByKey(_ + _, 20).collect()
    }
    assert(getExecutors.nonEmpty)
  }

  总结:

  在StreamingContext调用start方法的内部其实是会启动JobScheduler的Start方法,进行消息循环,在JobScheduler的start内部会构造JobGenerator和ReceiverTacker,并且调用JobGenerator和ReceiverTacker的start方法:
      1.JobGenerator启动后会不断的根据batchDuration生成一个个的Job
      2.ReceiverTracker启动后首先在Spark Cluster中启动Receiver(其实是在Executor中先启动ReceiverSupervisor),在Receiver收到数据后会通过ReceiverSupervisor存储到Executor并且把数据的Metadata信息发送给Driver中的ReceiverTracker,在ReceiverTracker内部会通过ReceivedBlockTracker来管理接受到的元数据信息.
      每个BatchInterval会产生一个具体的Job,其实这里的Job不是Spark Core中所指的Job,它只是基于DStreamGraph而生成的RDD的DAG而已,从Java角度讲,相当于Runnable接口实例,此时要想运行Job需要提交给JobScheduler,在JobScheduler中通过线程池的方式找到一个单独的线程来提交Job到集群运行(其实是在线程中基于RDD的Action触发真正的作业的运行),为什么使用线程池呢?
      1,作业不断生成,所以为了提升效率,我们需要线程池;这和在Executor中通过线程池执行Task有异曲同工之妙;
      2,有可能设置了Job的FAIR公平调度的方式,这个时候也需要多线程的支持.
时间: 2024-08-12 05:41:38

Spark版本定制第5天:案列解析Spark Streaming运行源码的相关文章

(版本定制)第5课:基于案例分析Spark Streaming流计算框架的运行源码

本期内容: 1.在线动态计算分类最热门商品案例回顾与演示 2.基于案例分析Spark Streaming的运行源码 第一部分案例: package com.dt.spark.sparkstreaming import com.robinspark.utils.ConnectionPoolimport org.apache.spark.SparkConfimport org.apache.spark.sql.Rowimport org.apache.spark.sql.hive.HiveConte

版本定制第5课:基于案例一节课贯通Spark Streaming流计算框架的运行源码

本期内容: 1.在线动态计算分类最热门商品案例回顾与演示 2.基于案例贯通Spark Streaming的运行源码 第一部分案例: package com.dt.spark.sparkstreaming import com.robinspark.utils.ConnectionPool import org.apache.spark.SparkConf import org.apache.spark.sql.Row import org.apache.spark.sql.hive.HiveCo

spark版本定制五:基于案例一节课贯通Spark Streaming流计算框架的运行源码

本期内容: 1.在线动态计算分类最热门商品案例回顾与演示 2.基于案例贯通Spark Streaming的运行源码 一.在线动态计算分类最热门商品案例回顾与演示 案例回顾: package com.dt.spark.sparkstreaming import com.robinspark.utils.ConnectionPool import org.apache.spark.SparkConf import org.apache.spark.sql.Row import org.apache.

Spark定制班第5课:基于案例一节课贯通Spark Streaming流计算框架的运行源码

本期内容: 1 在线动态计算分类最热门商品案例回顾与演示 2 基于案例贯通Spark Streaming的运行源码 1 在线动态计算分类最热门商品案例回顾与演示 我们用Spark Streaming+Spark SQL来实现分类最热门商品的在线动态计算.代码如下: package com.dt.spark.streaming import org.apache.spark.SparkConf import org.apache.spark.sql.Row import org.apache.sp

基于案例贯通 Spark Streaming 流计算框架的运行源码

本期内容 : Spark Streaming+Spark SQL案例展示 基于案例贯穿Spark Streaming的运行源码 一. 案例代码阐述 : 在线动态计算电商中不同类别中最热门的商品排名,例如:手机类别中最热门的三种手机.电视类别中最热门的三种电视等. 1.案例运行代码 : import org.apache.spark.SparkConf import org.apache.spark.sql.Row import org.apache.spark.sql.hive.HiveCont

Spark 定制版:005~贯通Spark Streaming流计算框架的运行源码

本讲内容: a. 在线动态计算分类最热门商品案例回顾与演示 b. 基于案例贯通Spark Streaming的运行源码 注:本讲内容基于Spark 1.6.1版本(在2016年5月来说是Spark最新版本)讲解. 上节回顾 上节课主要从事务视角为大家探索Spark Streaming架构机制:Spark Streaming程序分成而部分,一部分是Driver,另外一部分是Executor.通过对Driver和Executor解析,洞察怎么才能完成完整的语义.事务一致性,并保证数据的零丢失,Exa

第5课:基于案例一节课贯通Spark Streaming流计算框架的运行源码

本期内容: 1 在线动态计算分类最热门商品案例回顾与演示 2 基于案例贯通Spark Streaming的运行源码 一.案例代码 在线动态计算电商中不同类别中最热门的商品排名,例如:手机类别中最热门的三种手机.电视类别中最热门的三种电视等 package com.dt.spark.sparkstreaming import org.apache.spark.SparkConf import org.apache.spark.sql.Row import org.apache.spark.sql.

基于案例一节课贯通Spark Streaming流计算框架的运行源码

 在线动态计算分类最热门商品案例回顾与演示 基于案例贯通Spark Streaming的运行源码 使用Spark Streaming + Spark SQL来在线动态计算电商中不同类别中最热门的商品排名,例如手机这个类别下面最热门的三款手机. 是用mysql数据库作为元数据库,使用Hive作为存储引擎,使用Spark SQL作为查询引擎. 其中链接数据库代码如下: package com.dt.spark.com.dt.spark.streaming; import java.sql.Con

Spark发行版笔记5:贯通Spark Streaming流计算框架的运行源码

本章节内容: 一.在线动态计算分类最热门商品案例回顾 二.基于案例贯通Spark Streaming的运行源码 先看代码(源码场景:用户.用户的商品.商品的点击量排名,按商品.其点击量排名前三): package com.dt.spark.sparkstreaming import org.apache.spark.SparkConf import org.apache.spark.sql.Row import org.apache.spark.sql.hive.HiveContext impo