乘法逆元(转)

  定义:满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元。 
  为什么要有乘法逆元呢?
  当我们要求(a/b) mod p的值,且a很大,无法直接求得a/b的值时,我们就要用到乘法逆元。
  我们可以通过求b关于p的乘法逆元k,将a乘上k再模p,即(a*k) mod p。其结果与(a/b) mod p等价。

  证:
  根据b*k≡1 (mod p)有b*k=p*x+1。
  k=(p*x+1)/b。
  把k代入(a*k) mod p,得:(a*(p*x+1)/b) mod p
                                             =((a*p*x)/b+a/b) mod p
                                             =[((a*p*x)/b) mod p +(a/b)] mod p
                                             =[(p*(a*x)/b) mod p +(a/b)] mod p
      //p*[(a*x)/b] mod p=0
      所以原式等于:(a/b) mod p

时间: 2024-08-24 05:57:14

乘法逆元(转)的相关文章

HDU3037 Saving Beans(Lucas定理+乘法逆元)

题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个数是个经典问题,可以+1转化正整数解的个数用插板法解决:$C_{y+n-1}^{n-1}=C_{y+n-1}^y$. 而0<=y<=m,最后的结果就是—— $$\sum_{i=0}^m C_{i+n-1}^i$$ $$C_{n-1}^0+C_{n}^1+C_{n+1}^2+\dots+C_{n-1

UVa 11174 (乘法逆元) Stand in a Line

题意: 有n个人排队,要求每个人不能排在自己父亲的前面(如果有的话),求所有的排队方案数模1e9+7的值. 分析: <训练指南>上分析得挺清楚的,把公式贴一下吧: 设f(i)为以i为根节点的子树的排列方法,s(i)表示以i为根的子树的节点总数. f(i) = f(c1)f(c2)...f(ck)×(s(i)-1)!/(s(c1)!s(c2)!...s(ck)!) 按照书上最开始举的例子,其实这个式子也不难理解,就是先给这些子树确定一下位置,即有重元素的全排列. 子树的位置确定好以后,然后再确定

LightOJ - 1050 (唯一分解+推公式+乘法逆元)

题意:求a^b的所有约数和对1e9+7取模的结果 思路:对于一个数p,进行唯一分解,则p=P1^M1*P2^M2*...*Pn^Mn,则p的所有约数之和等于(P1^0+P1^1+...+P1^M1)*(P2^0+P2^1+...+P2^M2)*...*(Pn^0+Pn^1+...+Pn^Mn), p^t=P1^(M1*t)*P2^(M2*t)*...*Pn^(Mn*t),每一个(Pn^0+Pn^1+...+Pn^Mn)利用等比数列可以直接推出公式为(Pn^(Mn*t+1)-1)/(Pn-1),用

【奇技淫巧】数学技巧之乘法逆元

一.写在前面 开始码这篇blog之前我就意识到,这篇blog将会是我到目前为止码出的所有blog中最水的一篇.说是讲乘法逆元,但蒟蒻博主自己都不会证明_(:з」∠)_所以只打算放一个说明书式的用法,还请诸位看官老爷轻喷. 二.关于乘法逆元 我们知道模法交配率(Magic Coitus Law)(←_←其实并没有这东西)并不适用于除法.用式子表示大概是这样的: 但乘法逆元(Multiplicative Inverse Modulo,下式中用a'表示)就可以完成这样一个奇妙的操作: 然后我们就能用模

乘法逆元...Orz

最近打的几场比赛,都出现了有关逆元的题目,今天就整理了一下... 求乘法逆元的几种方法:http://www.cnblogs.com/james47/p/3871782.html 博文转载链接:http://blog.csdn.net/acdreamers/article/details/8220787 今天我们来探讨逆元在ACM-ICPC竞赛中的应用,逆元是一个很重要的概念,必须学会使用它. 对于正整数和,如果有,那么把这个同余方程中的最小正整数解叫做模的逆元. 逆元一般用扩展欧几里得算法来求

Codeforces 543D Road Improvement(树形DP+乘法逆元)

题目大概说给一棵树,树的边一开始都是损坏的,要修复一些边,修复完后要满足各个点到根的路径上最多只有一条坏的边,现在以各个点为根分别求出修复边的方案数,其结果模1000000007. 不难联想到这题和HDU2196是一种类型的树形DP,因为它们都要分别求各个点的答案.然后解法也不难想: dp0[u]表示只考虑以u结点为根的子树的方案数 dp1[u]表示u结点往上走,倒过来,以它父亲为根那部分的方案数 有了这两部分的结果,对于各个点u的答案就是dp0[u]*(dp1[u]+1).这两部分求法如下,画

乘法逆元及其应用

满足 a * k ≡ 1 (mod p) 的k 叫做 a关于p的乘法逆元.另一种表达方法是 k ≡ a-1 (mod p) 逆元在密码学中有广泛应用,AES密码体系的字节替代就是运用了逆元.(不知道说的smg) 应用: 我们知道(a+b)%p=(a%p+b%p)%p (a*b)%p=(a%p)*(b%p)%p 而求(a/b)%p时,可能会因为a是一个很大的数,不能直接算出来,却又不能(a/b)%p=(a%p/b%p)%p. 但是可以通过 k ≡ b-1 (mod p)  a / b = a *

loj #110. 乘法逆元

#110. 乘法逆元 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 这是一道模板题. 给定正整数 n nn 与 p pp,求 1∼n 1 \sim n1∼n 中的所有数在模 p pp 意义下的乘法逆元. 输入格式 一行两个正整数 n nn 与 p pp 输出格式 n nn 行,第 i ii 行一个正整数,表示 i ii 在模 p pp 意义下的乘法逆元. 样例 样例输入 10 13 样例输出

乘法逆元

定义:当(a,p)=1时,存在ax≡1(mod p),则x叫作a在模p意义下的乘法逆元. 求法: 1.当p为质数时,由费马小定理,得ap-1≡1(mod p),即(a·ap-2)≡1(mod p),则a在模p意义下的乘法逆元是ap-2,直接用快速幂可求得. 2.当p不为质数时,用扩展欧几里得算法求a的逆元. 代码: 1 int exgcd(int a,int b,int &x, int &y) 2 { 3 int d=a; 4 if(b!=0){ 5 d=exgcd(b,a%b,y,x);