HDU1086 You can Solve a Geometry Problem too(计算几何)

You can Solve a Geometry Problem too

                                        Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
                                        

Problem Description

Many
geometry(几何)problems were designed in the ACM/ICPC. And now, I also
prepare a geometry problem for this final exam. According to the
experience of many ACMers, geometry problems are always much trouble,
but this problem is very easy, after all we are now attending an exam,
not a contest :)
Give you N (1<=N<=100) segments(线段), please
output the number of all intersections(交点). You should count repeatedly
if M (M>2) segments intersect at the same point.

Note:
You can assume that two segments would not intersect at more than one point.

Input

Input
contains multiple test cases. Each test case contains a integer N
(1=N<=100) in a line first, and then N lines follow. Each line
describes one segment with four float values x1, y1, x2, y2 which are
coordinates of the segment’s ending.
A test case starting with 0 terminates the input and this test case is not to be processed.

Output

For each case, print the number of intersections, and one line one case.

Sample Input

2
0.00 0.00 1.00 1.00
0.00 1.00 1.00 0.00
3
0.00 0.00 1.00 1.00
0.00 1.00 1.00 0.000
0.00 0.00 1.00 0.00
0

Sample Output

1
3

Author

lcy

直接O(N^2)判断两线段是否相交即可。

判断线段是否相交的模板:

 1 inline double CrossProduct(node a, node b, node c){
 2     return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);
 3 }
 4 //Calculate the crossproduct
 5
 6
 7 inline bool SegX(node p1, node p2, node p3, node p4){
 8     double d1 = CrossProduct(p3, p4, p1);
 9     double d2 = CrossProduct(p3, p4, p2);
10     double d3 = CrossProduct(p1, p2, p3);
11     double d4 = CrossProduct(p1, p2, p4);
12     return (d1 * d2 <= 0 && d3 * d4 <= 0);
13 }
14 //Judge whether the line segments intersact

那么直接套用一下就好了。

 1 #include <bits/stdc++.h>
 2
 3 using namespace std;
 4
 5 struct node{
 6     double x, y;
 7 } pa[100010], pb[100010];
 8
 9 int n, num;
10
11 inline double CrossProduct(node a, node b, node c){
12     return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);
13 }
14
15
16 inline bool SegX(node p1, node p2, node p3, node p4){
17     double d1 = CrossProduct(p3, p4, p1);
18     double d2 = CrossProduct(p3, p4, p2);
19     double d3 = CrossProduct(p1, p2, p3);
20     double d4 = CrossProduct(p1, p2, p4);
21     return (d1 * d2 <= 0 && d3 * d4 <= 0);
22 }
23
24 int main(){
25
26     while (~scanf("%d", &n), n){
27         num = 0;
28         for (int i = 1; i <= n; ++i) scanf("%lf%lf%lf%lf", &pa[i].x, &pa[i].y, &pb[i].x, &pb[i].y);
29         for (int i = 1; i <= n - 1; ++i)
30             for (int j = i + 1; j <= n; ++j)
31                 if (SegX(pa[i], pb[i], pa[j], pb[j])) ++num;
32         printf("%d\n", num);
33     }
34
35     return 0;
36
37 }
时间: 2024-12-18 22:59:36

HDU1086 You can Solve a Geometry Problem too(计算几何)的相关文章

HDU1086 You can Solve a Geometry Problem too(数学几何)

这道题的主要解题思路如下: 第1 步:快速排斥试验,如果分别以P1P2 ,P3P4 为对角线做矩形,而这两个矩形不相交,则这两条线段肯定不相交,如下左图:即使两个矩形相交,这两条线段也不一定相交,如下右图,这时再用第2 步判断: 表示成语句,即两个矩形相交当且仅当下列式子为真: (max(x1,x2)≥min(x3,x4))∧ (max(x3,x4)≥min(x1,x2)) ∧(max(y1,y2)≥min(y3,y4))∧(max(y3,y4)≥min(y1,y2)) 两个矩形相交必须在两个方

HDU 1086 [You can Solve a Geometry Problem too] 计算几何

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1086 题目大意:给N条线段,问这些线段共有多少交点,多线交于一点要重复计算. 关键思想:叉乘可根据右手法则判断正负,相互跨越或者一条线段端点在另一条线段上则交点数+1. 代码如下: #include <iostream> using namespace std; const int MAXN=110; struct point{ double x,y; }; struct line{ point

You can Solve a Geometry Problem too (hdu1086)几何,判断两线段相交

You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 6837 Accepted Submission(s): 3303 Problem Description Many geometry(几何)problems were designed in the ACM/ICPC. A

hdoj-1086-You can Solve a Geometry Problem too 判断线段是否相交

You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 8683 Accepted Submission(s): 4227 Problem Description Many geometry(几何)problems were designed in the ACM/ICPC.

HDU 1086 You can Solve a Geometry Problem too(判断线段相交)

题目地址:HDU 1086 就这么一道仅仅判断线段相交的题目写了2k多B的代码..是不是有点浪费...但是我觉得似乎哪里也优化不了了.... 判断线段相交就是利用的叉积.假如现在两条线段分别是L1和L2,先求L1和L2两个端点与L1的某个端点的向量的叉积,如果这两个的叉积的乘积小于0的话,说明L1在是在L2两个端点之间的,但此时并不保证一定相交.此时需要用同样的方法去判断L2是否在L1的两个端点之间,如果L2也在L1的两个端点之间的话,那就足以说明L1与L2相交.但是这题还需要判断是否端点也相交

HDU 1086:You can Solve a Geometry Problem too

You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 6997    Accepted Submission(s): 3385 Problem Description Many geometry(几何)problems were designed in the ACM/

hdu 1086 You can Solve a Geometry Problem too (几何)

You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 6932    Accepted Submission(s): 3350 Problem Description Many geometry(几何)problems were designed in the ACM/I

You can Solve a Geometry Problem too(线段求交)

http://acm.hdu.edu.cn/showproblem.php?pid=1086 You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 8861    Accepted Submission(s): 4317 Problem Description Many

hdoj 1086 You can Solve a Geometry Problem too 【计算几何】

题意:就是判断各线段之间有没有交点. 判断两线段相交,要运用到叉积.两个线段相交肯定相互跨越,假设一个条线段(p1p2),另一条是(q1q2),那么p1p2肯定在q1q2线段的两侧,那么运用叉积如果p1p2跨越q1q2的话(q1p1)x(q2p2)<= 0.同样也要验证 q1q2是不是也跨越p1p2,注意:p1p2跨越q1q2,不代两个线段相交,可能是p1p2跨越直线q1q2,所以说还是要再次判断q1q2是不是跨越p1p2 还有另外一种比较容易理解的解法: 就是如果两个线段相交,那么两线段两端端