Linux keepalived与lvs的深入分析

一)概述

在本篇文章里,我们会涉及两部份内容,一个是LVS,另一个则是keepalived.

即我们用LVS和keepalived实现了负载均衡及高可用的服务器.

LVS有实现三种IP负载均衡技术和八种连接调度算法.并且LVS集群采用三层结构,即负载调度器,服务器池,共享存储.

1)负载调度器

负载调度器是LVS集群的唯一入口,它采用IP负载均衡技术,基于内容分发技术或两者并结合.

在IP负载均衡技术中,需要服务器池拥有相同的内容提供相同的服务.当客户请求到达时,调度器只根据服务器负载情况和设定调度算法从服务器池中选出一台机器,将请求转发给选出的机器,并记录这个调度.当这个请求的其他报文到达,也会被转发到前面选出的服务器.

在基于内容分发技术中,服务器可以提供不同的服务,当客户请求到达时,调度器可根据请求的内容选择服务器执行请求.

2)服务器池

服务器池也就是real server,是真正处理应用的服务器.

3)共享存储

它为服务器池提供一个共享的存储区,这样很容易使得服务器池拥有相同的内容,提供相同的服务.

keepalive

Keepalived在这里主要用作RealServer的健康状态检查以及Master主机和Backup主机之间failover的实现.

二)测试环境介绍

负载调度服务器(master): 10.1.1.160

负载调度服务器(slave): 10.1.1.162

vip为10.1.1.166

real server1:10.1.1.163

real server2:10.1.1.164

测试机:10.1.1.165

以上5台服务器我们均安装debian 5.0.

我们首先在负载调度服务器10.1.1.160及10.1.1.162安装lvs及keepalived

在real server安装apache2.0

三)keepalived/lvs的安装配置

1)在负载调度服务器(10.1.1.160)安装keepalived和ipvsadm,如下:

安装keepalived

apt-get install keepalived

安装ipvsadm

apt-get install ipvsadm

修改并创建keepalived配置文件如下:

vi /etc/keepalived/keepalived.conf

! Configuration File for keepalived

global_defs {

router_id LVS_1

}

vrrp_instance VI_1 {

state MASTER

interface eth0

virtual_router_id 51

priority 100

advert_int 1

authentication {

auth_type PASS

auth_pass 1111

}

virtual_ipaddress {

10.1.1.166

}

}

virtual_server 10.1.1.166 80 {

delay_loop 6

lb_algo rr

lb_kind DR

# persistence_timeout 60

protocol TCP

real_server 10.1.1.163 80 {

TCP_CHECK {

connect_timeout 10

nb_get_retry 3

delay_before_retry 3

connect_port 80

}

}

real_server 10.1.1.164 80 {

TCP_CHECK {

connect_timeout 10

nb_get_retry 3

delay_before_retry 3

connect_port 80

}

}

}

注:这里我们采用的IP负载均衡技术是DR.

2)在负载调度服务器(10.1.1.162)安装keepalived和ipvsadm,如下:

安装keepalived

apt-get install keepalived

安装ipvsadm

apt-get install ipvsadm

! Configuration File for keepalived

global_defs {

router_id LVS_2

}

vrrp_instance VI_1 {

state BACKUP

interface eth0

virtual_router_id 51

priority 50

advert_int 1

authentication {

auth_type PASS

auth_pass 1111

}

virtual_ipaddress {

10.1.1.166

}

}

virtual_server 10.1.1.166 80 {

delay_loop 6

lb_algo rr

lb_kind DR

# persistence_timeout 60

protocol TCP

real_server 10.1.1.163 80 {

TCP_CHECK {

connect_timeout 10

nb_get_retry 3

delay_before_retry 3

connect_port 80

}

}

real_server 10.1.1.164 80 {

TCP_CHECK {

connect_timeout 10

nb_get_retry 3

delay_before_retry 3

connect_port 80

}

}

}

3)配置real server

3.1)在real server上创建新的网络介质,这里为lo:0 10.1.1.166

ifconfig lo:0 10.1.1.166 broadcast 10.1.1.166 netmask255.255.255.255 up

3.2)关闭ARP广播响应

echo "1">/proc/sys/net/ipv4/conf/lo/arp_ignore

echo "2">/proc/sys/net/ipv4/conf/lo/arp_announce

echo "1">/proc/sys/net/ipv4/conf/all/arp_ignore

echo "2">/proc/sys/net/ipv4/conf/all/arp_announce

3.3)安装apache

apt-get install apache2

echo "real server no1" >>/var/www/index.html

注:两台real server执行同样的操作.

5)测试

5.1)启动keepalived服务:

lvs1:

/etc/init.d/keepalived restart

lvs2:

/etc/init.d/keepalived restart

5.2)测试机测试:

ping 10.1.1.166

PING 10.1.1.166 (10.1.1.166) 56(84) bytes of data.

64 bytes from 10.1.1.166: icmp_req=1 ttl=64 time=0.225 ms

64 bytes from 10.1.1.166: icmp_req=2 ttl=64 time=0.179 ms

64 bytes from 10.1.1.166: icmp_req=3 ttl=64 time=0.163 ms

64 bytes from 10.1.1.166: icmp_req=4 ttl=64 time=0.226 ms

64 bytes from 10.1.1.166: icmp_req=5 ttl=64 time=0.218 ms

在lvs1上抓包如下:

tcpdump -p icmp -i eth0

tcpdump: verbose output suppressed, use -v or -vv for full protocoldecode

listening on eth0, link-type EN10MB (Ethernet), capture size 65535bytes

09:45:12.572695 IP 10.1.1.165 > 10.1.1.166: ICMPecho request, id 17181, seq 4, length 64

09:45:12.572713 IP 10.1.1.166 > 10.1.1.165: ICMPecho reply, id 17181, seq 4, length 64

09:45:13.572693 IP 10.1.1.165 > 10.1.1.166: ICMPecho request, id 17181, seq 5, length 64

09:45:13.572708 IP 10.1.1.166 > 10.1.1.165: ICMPecho reply, id 17181, seq 5, length 64

09:45:14.572724 IP 10.1.1.165 > 10.1.1.166: ICMPecho request, id 17181, seq 6, length 64

09:45:14.572741 IP 10.1.1.166 > 10.1.1.165: ICMPecho reply, id 17181, seq 6, length 64

09:45:15.572738 IP 10.1.1.165 > 10.1.1.166: ICMPecho request, id 17181, seq 7, length 64

09:45:15.572756 IP 10.1.1.166 > 10.1.1.165: ICMPecho reply, id 17181, seq 7, length 64

09:45:16.572694 IP 10.1.1.165 > 10.1.1.166: ICMPecho request, id 17181, seq 8, length 64

09:45:16.572710 IP 10.1.1.166 > 10.1.1.165: ICMPecho reply, id 17181, seq 8, length 64

说明现在lvs是在lvs1的服务器.

四)keepalived主/从通讯分析

1)vrrp协议与主/从切换机制

keepalived的master与slave是通过vrrp2协议进行通讯.以决定各自的状态及vip等相关信息,MASTER会发送广播包,广播地址为224.0.0.18.

我们通过抓包如下:

tcpdump -X -n -vvv ‘dst 224.0.0.18‘

tcpdump: listening on eth0, link-type EN10MB (Ethernet), capturesize 65535 bytes

09:43:04.295639 IP (tos 0x0, ttl 255, id 51508, offset 0, flags[none], proto VRRP (112), length 40)

10.1.1.160 >224.0.0.18: VRRPv2, Advertisement, vrid 51, prio 200, authtypesimple, intvl 1s, length 20, addrs: 10.1.1.166 auth"1111^@^@^@^@"

0x0000:  4500 0028 c934 0000 ff70 067e 0a01 01a0 E..(.4...p.~....

0x0010:  e000 0012 2133 c801 0101 a7c0 0a01 01a6 ....!3..........

0x0020:  3131 3131 0000 0000                  1111....

09:43:05.295686 IP (tos 0x0, ttl 255, id 55831, offset 0, flags[none], proto VRRP (112), length 40)

10.1.1.162 >224.0.0.18: VRRPv2, Advertisement, vrid 52, prio 100, authtypesimple, intvl 1s, length 20, addrs: 10.1.1.166 auth"1111^@^@^@^@"

0x0000:  4500 0028 da17 0000 ff70 f598 0a01 01a2 E..(.....p......

0x0010:  e000 0012 2134 6401 0101 0bc0 0a01 01a6 ....!4d.........

0x0020:  3131 3131 0000 0000                  1111....

09:43:05.296837 IP (tos 0x0, ttl 255, id 51509, offset 0, flags[none], proto VRRP (112), length 40)

10.1.1.160 >224.0.0.18: VRRPv2, Advertisement, vrid 51, prio 200, authtypesimple, intvl 1s, length 20, addrs: 10.1.1.166 auth"1111^@^@^@^@"

0x0000:  4500 0028 c935 0000 ff70 067d 0a01 01a0 E..(.5...p.}....

0x0010:  e000 0012 2133 c801 0101 a7c0 0a01 01a6 ....!3..........

0x0020:  3131 3131 0000 0000                  1111....

以10.1.1.160服务器发广播数据为例,如下:

10.1.1.160 > 224.0.0.18: VRRPv2, Advertisement, vrid51, prio 200, authtype simple, intvl 1s, length 20, addrs:10.1.1.166 auth "1111^@^@^@^@"

0x0000:  4500 0028 c934 0000 ff70 067e 0a01 01a0 E..(.4...p.~....

0x0010:  e000 0012 2133 c801 0101 a7c0 0a01 01a6 ....!3..........

0x0020:  3131 3131 0000 0000                  1111....

vrrpv2的协议的消息从这里开始:

0x0014: 2133 c801 0101 a7c0 0a01 01a6 ....!3..........

0x0020: 3131 3131 0000 0000

version: 版本号4位,在RFC中定义为2,所以这里是2.

type: 类型,4位,目前只定义一种类型,就是Advertisement,表示通告信息,取值为1.所以这里是1

VirtualID:虚拟路由器ID,8位,因为在lvs1中的keepalived定义的virtual_router_id为51,所以转换为16进制就是33.

Priority:优先级,8位,因为在lvs1中的keepalived定义的Priority为200,所以转换为16进制就是C8

count ip addrs:VRRP包中的IP地址数量,8位.这里只有一个ip地址,所以就是01

authtype:认证类型,8位,在RFC3768中认证功能已经取消.所以该字段为01,其实这样只对老版本的兼容.如果取消则为00.

adver int:通告包的发送间隔时间,缺省为1秒,我们的配置也是1秒,所以这里的值为01

checksum:检验和,16位.这里的校验数据范围只是VRRP数据,并不包括IP头.

ip address:vip地址,这里是16位,我们的vip地址为10.1.1.166,所以转换为十六进制就是0a0101a6

auth data:验证的密码,密码的最大长度为8个字符,也就是32位,不足32位的,以0补全,所以这里就是3131 31310000 0000

2)keepalived的vrrp配置

这里是master的配置,如下:

! Configuration File for keepalived

global_defs {

router_id LVS1

}

vrrp_instance VI_1 {

state MASTER

interface eth0

virtual_router_id 51

priority 200

advert_int 1

authentication {

auth_type PASS

auth_pass 1111

}

virtual_ipaddress {

10.1.1.166

}

}

这里是backup的配置,如下:

! Configuration File for keepalived

global_defs {

router_id LVS2

}

vrrp_instance VI_1 {

state BACKUP

interface eth0

virtual_router_id 51

priority  90

advert_int 1

authentication {

auth_type PASS

auth_pass 1111

}

virtual_ipaddress {

10.1.1.166

}

}

注:

global_defs{}是全局配置.

router_id是虚拟路由器ID,可以是任意值,建议是当前的主机名.

vrrp_instance 实例名{}是配置VRRP的实例,我们这里只做最基本的介绍.

state MASTER:代表当前的keepalived所在的服务器是主机还是备用机.如果是备用机则用BACKUP.

问题一:

如果我们这里两台机器都是MASTER,谁是主谁是备呢?

答案是要看两台机器的优先级(priority配置项).state并不在vrrp协议中定义,所以决定权在priority配置项.

下面是把两台机器的keepalived都改成MASTER.如下:

lvs1:

Sep  6 13:45:45 10 kernel: [ 7290.447277] IPVS:sync thread started: state = MASTER, mcast_ifn = eth0, syncid =51

Sep  6 13:45:46 10 Keepalived_vrrp:VRRP_Instance(VI_1) Transition to MASTER STATE

Sep  6 13:45:47 10 Keepalived_vrrp:VRRP_Instance(VI_1) Entering MASTER STATE

Sep  6 14:44:57 10 Keepalived_vrrp:VRRP_Instance(VI_1) Received lower prio advert, forcing newelection

lvs2:

Sep  6 14:44:56 debian kernel: [536121.748395]IPVS: sync thread started: state = MASTER, mcast_ifn = eth0, syncid= 51

Sep  6 14:44:57 debian Keepalived_vrrp:VRRP_Instance(VI_1) Transition to MASTER STATE

Sep  6 14:44:57 debian Keepalived_vrrp:VRRP_Instance(VI_1) Received higher prio advert

Sep  6 14:44:57 debian Keepalived_vrrp:VRRP_Instance(VI_1) Entering BACKUP STATE

注意:

我们的MASTER在lvs1上,这时将lvs2更改为MASTER,并重启keepalived,导致有两个MASTER使用同一个virtul_router_id,所以要通过优先级决定,谁是主,谁是备.

就有了下面的日志输出:

lvs1:

Sep  6 14:44:57 10 Keepalived_vrrp:VRRP_Instance(VI_1) Received lower prio advert, forcing newelection

lvs2:

Sep  6 14:44:57 debian Keepalived_vrrp:VRRP_Instance(VI_1) Received higher prio advert

Sep  6 14:44:57 debian Keepalived_vrrp:VRRP_Instance(VI_1) Entering BACKUP STATE

如果优先级再相同呢?

答案是两个keepalived都将成为MASTER,并且也都会配置VIP.这样会导致地址冲突.

问题二:

如果MASTER的keepalived被停掉,BACKUP是如何接管的?

首先MASTER在运行时会向本网段发送VRRPv2组播报文,如下:

tcpdump -X -n -vvv ‘dst 224.0.0.18‘

tcpdump: listening on eth0, link-type EN10MB (Ethernet), capturesize 65535 bytes

16:54:47.816024 IP (tos 0x0, ttl 255, id 2250, offset 0, flags[none], proto VRRP (112), length 40)

10.1.1.160 >224.0.0.18: VRRPv2, Advertisement, vrid 51, prio 100, authtypesimple, intvl 1s, length 20, addrs: 10.1.1.166 auth"1111^@^@^@^@"

0x0000:  4500 0028 08ca 0000 ff70 c6e8 0a01 01a0 E..(.....p......

0x0010:  e000 0012 2133 6401 0101 0bc1 0a01 01a6 ....!3d.........

0x0020:  3131 3131 0000 0000                  1111....

注:

组播报文我们之前分析过.这里要说明的是BACKUP是不发组播报文的.

但是如果MASTER当掉,这时BACKUP在确认没有收到MASTER的组播报文后,会主动发送组播报文,声明自己的keepalived状态,随后启用VIP.正式接管keepliaved.

问题三:

在MASTER被当掉,而又再次启用后,BACKUP处于什么状态,keepalived如何处理?

在上面的配置中,如果lvs1当掉,lvs2会接管vip,状态升级为MASTER,但如果之前的lvs1恢复后,它会重新接管VIP,并更新状态为MASTER.

而lvs2会降级为BACKUP.

有办法在lvs1恢复后,不切换系统吗?

答案是肯定的.

nopreempt选项会解决这个问题.

修改lvs1相关配置如下:

cat /etc/keepalived/keepalived.conf

! Configuration File for keepalived

global_defs {

router_id LVS1

}

vrrp_instance VI_1 {

state BACKUP

interface eth0

virtual_router_id 51

priority 100

advert_int 1

authentication {

auth_type PASS

auth_pass 1111

}

virtual_ipaddress {

10.1.1.166

}

}

这里修改state为BACKUP,也就是说两台keepalived有两个BACKUP.

修改lvs2相关配置如下:

cat /etc/keepalived/keepalived.conf

! Configuration File for keepalived

global_defs {

router_id LVS2

}

vrrp_instance VI_1 {

state BACKUP

interface eth0

virtual_router_id 51

priority  150

advert_int 1

nopreempt

authentication {

auth_type PASS

auth_pass 1111

}

virtual_ipaddress {

10.1.1.166

}

}

在这里加入nopreempt选项,同时将优先级调整为150,即高于lvs1的优先级100.

下面我们模拟backup的切换.

现在MASTER在lvs1上,日志如下:

Sep  7 10:54:10 10 Keepalived_vrrp:VRRP_Instance(VI_1) Transition to MASTER STATE

Sep  7 10:54:11 10 Keepalived_vrrp:VRRP_Instance(VI_1) Entering MASTER STATE

Sep  7 10:54:11 10 kernel: [80003.605718] IPVS:stopping backup sync thread 5160 ...

Sep  7 10:54:11 10 kernel: [80003.606177] IPVS:sync thread started: state = MASTER, mcast_ifn = eth0, syncid =51

我们关闭lvs1的keepalived服务如下:

/etc/init.d/keepalived stop

观察lvs2的message日志,如下:

tail -f /var/log/message

Sep  7 10:53:58 debian Keepalived_vrrp:VRRP_Instance(VI_1) Transition to MASTER STATE

Sep  7 10:53:59 debian Keepalived_vrrp:VRRP_Instance(VI_1) Entering MASTER STATE

Sep  7 10:54:06 debian Keepalived_vrrp:Terminating VRRP child process on signal

Sep  7 10:54:06 debian Keepalived_healthcheckers:Terminating Healthchecker child process on signal

注:我们看到lvs2由BACKUP的状态变为MASTER.

此时我们开启lvs1的keepalived服务,如下:

/etc/init.d/keepalived start

查看lvs1的日志,如下:

Sep  7 11:08:52 10 Keepalived_vrrp:VRRP_Instance(VI_1) Entering BACKUP STATE

Sep  7 11:08:52 10 Keepalived_healthcheckers:Using LinkWatch kernel netlink reflector...

Sep  7 11:08:52 10 kernel: [80885.206211] IPVS:sync thread started: state = BACKUP, mcast_ifn = eth0, syncid =51

注:我们看到lvs1的状态在重启keepalived之后依然是BACKUP.

这里理一下思路:

为什么要配置两个BACKUP状态呢?因为要保证互不抢占.

而为什么一台要比另一个的优先级高呢?因为我们在高优先级的服务器上配置了nopreempt,导致高的优先级也不会抢占低的优先级.

也就是说只有在一台keepalived失败的时候,另一台才会接管.

interface eth0:代表当前进行vrrp通讯的网络接口卡.

virtual_router_id:代表组播ID.

事实上在一组MASTER/BACKUP实例中,virtual_router_id一定要相同,如果不同,则MASTER/BACKUP都会发送组播数据包.

即vip在两台机器上都会生效.导致地址冲突.

priority 100:代表优先级,即高优先级成为MASTER.

如果state为MASTER,而优先级还比另一台为BACKUP的低,那么它就直接降级为BACKUP.

优先级不能相同,如果相同,则两个keepalived都会生效.并发送组播包.

advert_int 1:VRRP组播周期秒数.

将advert_int调整为5秒,即5秒发一次组播包,如下:

tcpdump vrrp

tcpdump: verbose output suppressed, use -v or -vv for full protocoldecode

listening on eth0, link-type EN10MB (Ethernet), capture size 65535bytes

14:14:51.683320 IP 10.1.1.160 > vrrp.mcast.net:VRRPv2, Advertisement, vrid 51, prio 150, authtype simple, intvl5s, length 20

14:14:56.684241 IP 10.1.1.160 > vrrp.mcast.net:VRRPv2, Advertisement, vrid 51, prio 150, authtype simple, intvl5s, length 20

14:15:01.685193 IP 10.1.1.160 > vrrp.mcast.net:VRRPv2, Advertisement, vrid 51, prio 150, authtype simple, intvl5s, length 20

14:15:06.686163 IP 10.1.1.160 > vrrp.mcast.net:VRRPv2, Advertisement, vrid 51, prio 150, authtype simple, intvl5s, length 20

14:15:11.687132 IP 10.1.1.160 > vrrp.mcast.net:VRRPv2, Advertisement, vrid 51, prio 150, authtype simple, intvl5s, length 20

这里注意,如果master/backup的组播周期不一至,比如master为5秒,backup为1秒,结果是backup生效,master的keepalived失效,此时只有backup在发组播包.

在master端查看日志如下:

tail -f /var/log/message

Sep  7 14:21:16 10 Keepalived_vrrp: advertissementinterval mismatch mine=5000000 rcved=1

Sep  7 14:21:16 10 Keepalived_vrrp: Sync instanceneeded on eth0 !!!

Sep  7 14:21:16 10 Keepalived_vrrp:VRRP_Instance(VI_1) Dropping received VRRP packet...

authentication {

auth_type PASS

auth_pass 1111

}

确认MASTER/BACKUP的验证方式及口令.

注意:如果MASTER/BACKUP口令不一致,会导致keepalived处理失败,如下:

ep  7 14:34:43 debian Keepalived_vrrp: bogus VRRPpacket received on eth0 !!!

Sep  7 14:34:43 debian Keepalived_vrrp:VRRP_Instance(VI_1) Dropping received VRRP packet...

Sep  7 14:34:44 debian Keepalived_vrrp: receive aninvalid passwd!

virtual_ipaddress {

10.1.1.166

}

VRRP HA虚拟地址,也就是vip.

这里要注意的是,VIP在定义域里可以有多个,如下:

virtual_ipaddress {

10.1.1.166

10.1.1.167

}

查看vip地址,如下:

ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu16436 qdisc noqueue state UNKNOWN

link/loopback00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope hostlo

inet6 ::1/128 scopehost

valid_lft forever preferred_lft forever

2: eth0:<BROADCAST,MULTICAST,UP,LOWER_UP> mtu1500 qdisc pfifo_fast state UP qlen 1000

link/ether 6c:62:6d:4c:3a:5dbrd ff:ff:ff:ff:ff:ff

inet 10.1.1.162/24 brd10.1.1.255 scope global eth0

inet 10.1.1.166/32 scopeglobal eth0

inet 10.1.1.167/32 scopeglobal eth0

inet6fe80::6e62:6dff:fe4c:3a5d/64 scope link

valid_lft forever preferred_lft forever

五)通过自定义脚本检查

vrrp_script 脚本名称 {}

我们可以通过脚本/命令检查系统,如果发现执行失败,则进行master/backup的切换.

下面是加了脚本的lvs1,如下:

! Configuration File for keepalived

global_defs {

router_id LVS1

}

vrrp_script chk_nfs {

script "/bin/pidof nfsd"

interval10

weight -90

fall   3

rise   1

}

vrrp_instance VI_1 {

state MASTER

interface eth0

virtual_router_id 51

priority 150

advert_int 1

preempt_delay 300

track_script {

chk_nfs

}

authentication {

auth_type PASS

auth_pass 1111

}

virtual_ipaddress {

10.1.1.166

}

}

下面是加了脚本的lvs2,如下:

! Configuration File for keepalived

global_defs {

router_id LVS1

}

vrrp_script chk_nfs {

script "/bin/pidof nfsd"

interval 10

weight -90

fall   3

rise   1

}

vrrp_instance VI_1 {

state BACKUP

interface eth0

virtual_router_id 51

priority 100

advert_int 1

track_script {

chk_nfs

}

authentication {

auth_type PASS

auth_pass 1111

}

virtual_ipaddress {

10.1.1.166

}

}

注:

1)我们通过/bin/pidof nfsd检查系统中是否运行了nfsd服务,检查的时间间隔为10秒.

2)如果lvs1(master)脚本运行3次都失败,keepalived在当前的优先级下减90,如果脚本执行成功,则恢复优先级.

测试如下:

我们在lvs1上关闭nfs服务.

/etc/init.d/nfs-kernel-server stop

查看lvs1日志,如下:

Sep  7 16:41:22 10 Keepalived_vrrp:VRRP_Instance(VI_1) forcing a new MASTER election

Sep  7 16:41:23 10 Keepalived_vrrp:VRRP_Instance(VI_1) Transition to MASTER STATE

Sep  7 16:41:24 10 Keepalived_vrrp:VRRP_Instance(VI_1) Entering MASTER STATE

Sep  7 16:49:16 10 kernel: [ 5736.924654] nfsd:last server has exited, flushing export cache

Sep  7 16:49:42 10 Keepalived_vrrp:VRRP_Script(chk_nfs) failed

Sep  7 16:49:43 10 Keepalived_vrrp:VRRP_Instance(VI_1) Received higher prio advert

Sep  7 16:49:43 10 Keepalived_vrrp:VRRP_Instance(VI_1) Entering BACKUP STATE

此时查看lvs2上面的日志,如下:

Sep  7 16:49:08 debian Keepalived_vrrp:VRRP_Script(chk_nfs) succeeded

Sep  7 16:49:43 debian Keepalived_vrrp:VRRP_Instance(VI_1) forcing a new MASTER election

Sep  7 16:49:44 debian Keepalived_vrrp:VRRP_Instance(VI_1) Transition to MASTER STATE

Sep  7 16:49:45 debian Keepalived_vrrp:VRRP_Instance(VI_1) Entering MASTER STATE

此时启动lvs1上面的nfs,如下:

/etc/init.d/nfs-kernel-server start

查看lvs1日志,如下:

Sep  7 17:21:52 10 Keepalived_vrrp:VRRP_Script(chk_nfs) succeeded

Sep  7 17:21:52 10 Keepalived_vrrp:VRRP_Instance(VI_1) forcing a new MASTER election

Sep  7 17:21:53 10 Keepalived_vrrp:VRRP_Instance(VI_1) Transition to MASTER STATE

Sep  7 17:21:54 10 Keepalived_vrrp:VRRP_Instance(VI_1) Entering MASTER STATE

注:我们看到lvs1在这里提升优先级升级为MASTER.

时间: 2024-10-17 07:17:23

Linux keepalived与lvs的深入分析的相关文章

小白应该怎样Linux利用keepalived实现lvs的高可用性?

LVS是Linux Virtual Server的简写,意即Linux虚拟服务器,是一个虚拟的服务器集群系统.这篇文章主要介绍了Linux利用keepalived实现lvs的高可用性 ,需要的朋友可以参考下 lvs+keepalived是什么? keepalived工作原理 keepalived是集群管理中保证集群高可用的一个服务软件,其功能类似于heartbeat,用来防止单点故障. keepalived是以VRRP协议为实现基础的,VRRP全称Virtual Router Redundanc

基于Keepalived实现LVS双主高可用集群

前言 前面说过基于heartbeat的LVS高可用方案,今天带来另一种解决方案:基于Keepalived实现LVS双主高可用集群.什么是Keepalived呢,keepalived观其名可知,保持存活,在网络里面就是保持在线了, 也就是所谓的高可用或热备,用来防止单点故障的发生.本文将详细讲述Keepalived工作原理及高可用解决方案的实现. 相关介绍 Keepalived简介 Keepalived采用VRRP(virtual router redundancy protocol,虚拟路由冗余

高可用集群技术之keepalived实现lvs高可用并负载均衡web服务

Keepalived概述: Keepalived的作用是检测服务器的状态,如果有一台web服务器死机,或工作出现故障,Keepalived将检测到,并将有故障的服务器从系统中剔除,同时使用其他服务器代替该服务器的工作,当服务器工作正常后Keepalived自动将服务器加入到服务器群中,这些工作全部自动完成,不需要人工干涉,需要人工做的只是修复故障的服务器. keepalived实现lvs高可用并负载均衡web服务: 准备工作: 2台keepalived节点为: node1.samlee.com

基于keepalived实现LVS的高可用

keepalived简介 首先简单介绍一下VRRP协议(虚拟路由器冗余协议).VRRP是一种容错协议,它可以将一组路由器组织成一个虚拟路由器,这个虚拟路由器仅适用一个IP地址,这个IP地址配置在其中的一台路由器上,这个路由器即为主路由器(MASTER),其余的为备用路由器(BACKUP).如果这个路由器组内的MASTER路由器出现故障了,BACKUP路由器将会通过选举策略选出一个新的MASTER路由器继续向外提供服务.这样就保证了网络之间的通信不会中断. keepalived即采用了VRRP协议

keepalived实现lvs的高可用

搭建环境: 两台director,两台RS director1:ip(172.16.125.5),安装好keepalived: director2:ip(172.16.125.6),安装好keepalived: RS1:ip(172.16.125.7),安装好httpd: RS2:ip(172.16.125.8),安装好httpd: vip(1):172.16.125.100,vip(2):172.16.125.110. 在此处keepalived实现lvs的高可用,使用了lvs的dr模型.关闭

实例:LVS+Keepalived配置LVS的高可用

LVS+Keepalived配置LVS的高可用 我们这里LVS-DR模型的高可用集群: 实验环境:     vm1 LVS-DR1:              eth0 172.16.3.2/16              VIP :eth0:0 172.16.3.88              vm2 LVS-DR2:             eth0 172.16.3.3/16     vm3 Server-web1             RS1: eth0 172.16.3.1/16  

Keepalived与LVS

########################Keepalived的工作原理####################说明:1.keepalived是lvs的扩展项目,因此它们之间具备良好的兼容性.这点应该是keepalived部署比其他类似工具能更简洁的原因吧!2.通过对服务器池对象的健康检查,实现对失效机器/服务的故障隔离.3.负载均衡器之间的失败切换failover,是通过VRRPv2(Virtual Router Redundancy Protocol)stack实现的.##VRRP工作

keepalived实现lvs高可用并负载均衡lamp

一.安装lamp 1.安装httpd(172.16.23.211) [[email protected] ~]# yum install -y httpd 2.安装php(172.16.23.211) [[email protected] ~]# yum install -y php 3.安装php-mysql(172.16.23.211) [[email protected] ~]# yum install -y php-mysql 4.安装mariadb(172.16.23.211 Cent

keepalived配置lvs使用

keepalived最初专为LVS设计用来监控LVS集群系统中各个节点的状态,后来加入VRRP功能.因此也可以做nginx,haproxy,mysql的高可用. VRRP:虚拟路由器冗余协议,解决静态路由单点故障.通过竞选协议来实现虚拟路由器的功能,所有的协议报文通过ip多播(多播地址224.0.0.18),虚拟路由器的vrid对外的MAC地址00-00-5e-00-01-vrid.master会一直发VRRP广告包,如果BACKUP收不到广播包,会自己配置vip起服务. ###########