Shoi2017试题泛做

一口气做完六个省的省选(误)

Day1

[Shoi2017]期末考试

枚举最大的天数,然后代价贪心地O(1)计算。

 1 #include <cstdio>
 2 #include <algorithm>
 3
 4 #define R register
 5 typedef long long ll;
 6 #define maxn 100010
 7 #define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0)
 8 #define cmin(_a, _b) (_a > (_b) ? _a = (_b) : 0)
 9 #define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
10 int a[maxn], b[maxn];
11 int main()
12 {
13     R ll A, B, C, sum = 0, suma = 0; scanf("%lld%lld%lld", &A, &B, &C);
14     R int n, m, maxx = 0; scanf("%d%d", &n, &m);
15     for (R int i = 1; i <= n; ++i) scanf("%d", &a[i]), suma += a[i];
16     for (R int i = 1; i <= m; ++i) scanf("%d", &b[i]), sum += b[i];
17     std::sort(a + 1, a + n + 1);
18     std::sort(b + 1, b + m + 1);
19     maxx = b[m];
20     R int p = m + 1, pp = n + 1;
21     R ll pre = sum, suf = 0, ans = 1e18;
22     for (R int i = maxx; i; --i)
23     {
24         while (p && b[p - 1] >= i) --p, suf += b[p], pre -= b[p];
25         while (pp && a[pp - 1] >= i) suma -= a[--pp];
26         R ll need = suf - 1ll * i * (m - p + 1);
27         if (A >= B)
28         {
29             R ll cost = (1ll * i * (pp - 1) - suma) * C + need * B;
30             cost > 0 ? cmin(ans, cost) : 0;
31         }
32         else
33         {
34             R ll v = 1ll * i * (p - 1) - pre;
35 //            printf("v = %lld %lld %d\n", v, need, i);
36 //            printf("pp %d suma %lld\n", pp, suma);
37             cmin(v, need);
38             R ll cost = (1ll * i * (pp - 1) - suma) * C + v * A;
39             need -= v;
40             cost += need * B;
41             cost > 0 ? cmin(ans, cost) : 0;
42 //            printf("%lld\n", ans);
43         }
44     }
45     printf("%lld\n", ans);
46     return 0;
47 }

D1T1

[Shoi2017]相逢是问候

恶心题。广义欧拉定理+线段树。

不懂什么是广义欧拉定理的同学(比如我)自行Baidu吧。大意和普通的欧拉定理是差不多的。

我们想象一下,指数第一次是模phi(p),第二次就是模phi(phi(p)),如此迭代下去直到模数变成1,那么就和原先的数无关了,并且因为后面都是模1,到最后的时候每次操作相当于最上面的那个c拿去模1,结果还是c^c^c...的多少次方,所以它的值没有变。

一直迭代phi的这个操作我们联想到了 2749: [HAOI2012]外星人 ,可以证明这个操作次数是log级别的(详见那题题解)。

根据以上预备知识我们可以得到以下算法:

用线段树维护区间没有变成自环的点的位置,然后每次找到这个点暴力重新计算数值。

复杂度是每个点最多算log次*每次要算log次*快速幂的log,所以是3个log的。(很爆炸的复杂度)

  1 #include <cstdio>
  2
  3 #define R register
  4 #define maxn 50010
  5 #define maxh 25
  6 #define maxx 500000
  7 typedef long long ll;
  8 bool flag, fl[maxh][maxx + 10], vis[maxh][maxx + 10];
  9 int dp[maxh][maxx + 10];
 10 int ph[2333], phcnt, fc, p, c;
 11 int counter;
 12 inline int qpow(R int base, R int power, R int mh)
 13 {
 14     flag = 0;
 15     R bool memo = power <= maxx && phcnt - mh < maxh;
 16     if (memo && vis[phcnt - mh][power]) {flag = fl[phcnt - mh][power]; ++counter; return dp[phcnt - mh][power];}
 17     R int mod = ph[mh], tp = power;
 18 //    fprintf(stderr, "base %d %d\n", mh, power);
 19     R int ret = 1; ret >= mod ? flag = 1, ret %= mod : 0;
 20     for (R ll t; power; power >>= 1, base = 1ll * base * base % mod)
 21         power & 1 ? (t = 1ll * ret * base) >= mod ? flag = 1, ret = t % mod : ret = t : 0;
 22 //    printf("flag %d\n", flag);
 23     memo ? vis[phcnt - mh][tp] = 1, fl[phcnt - mh][tp] = flag, dp[phcnt - mh][tp] = ret : 0;
 24     return ret;
 25 }
 26 inline int phi(R int x)
 27 {
 28     R int t = x, ret = 1;
 29 //    printf("%d\n", x);
 30     for (R int i = 2; 1ll * i * i <= x; ++i)
 31         if (t % i == 0)
 32         {
 33             t /= i; ret *= i - 1;
 34             while (t > 1 && t % i == 0)
 35                 t /= i, ret *= i;
 36         }
 37     t != 1 ? ret *= t - 1 : 0;
 38     return ret;
 39 }
 40 ll sum[maxn << 2];
 41 bool tr[maxn << 2];
 42 int cov[maxn], a[maxn], ql, qr, qv;
 43 inline void update(R int o)
 44 {
 45     sum[o] = (sum[o << 1] + sum[o << 1 | 1]) % p;
 46     tr[o] = tr[o << 1] && tr[o << 1 | 1];
 47 }
 48 void build(R int o, R int l, R int r)
 49 {
 50     if (l == r)
 51     {
 52         sum[o] = a[l];
 53         tr[o] = phcnt == 0;
 54         return ;
 55     }
 56     R int mid = l + r >> 1;
 57     build(o << 1, l, mid); build(o << 1 | 1, mid + 1, r);
 58     update(o);
 59 }
 60 int query(R int o, R int l, R int r)
 61 {
 62     if (ql <= l && r <= qr) return sum[o];
 63     R int mid = l + r >> 1, ret = 0;
 64     if (ql <= mid) (ret += query(o << 1, l, mid)) %= p;
 65     if (mid < qr) (ret += query(o << 1 | 1, mid + 1, r)) %= p;
 66     return ret;
 67 }
 68 void modify(R int o, R int l, R int r)
 69 {
 70     if (l == r)
 71     {
 72         if (tr[o]) return ;
 73         ++cov[l];
 74         a[l] >= ph[cov[l]] ? flag = 1 : flag = 0;
 75         R int ff = a[l] % ph[cov[l]];
 76 //        printf("apos %d flag %d\n", a[l], flag);
 77         for (R int i = cov[l]; i; --i) ff = qpow(c, ff + (flag ? ph[i] : 0), i - 1);
 78
 79 //        printf("l %d ff %d\n", l, ff);
 80         tr[o] = cov[l] == phcnt;
 81         sum[o] = ff;
 82         return ;
 83     }
 84     R int mid = l + r >> 1;
 85     if (ql <= l && r <= qr)
 86     {
 87         if (!tr[o << 1]) modify(o << 1, l, mid);
 88         if (!tr[o << 1 | 1]) modify(o << 1 | 1, mid + 1, r);
 89     }
 90     else
 91     {
 92         if (ql <= mid) modify(o << 1, l, mid);
 93         if (mid < qr) modify(o << 1 | 1, mid + 1, r);
 94     }
 95     update(o);
 96 }
 97 int main()
 98 {
 99     R int n, m; scanf("%d%d%d%d", &n, &m, &p, &c);
100     ph[0] = p; for (; ph[phcnt] != 1;) ph[++phcnt] = phi(ph[phcnt - 1]);
101     ph[++phcnt] = 1;
102 //    fprintf(stderr, "phcnt %d\n", phcnt);
103 //    for (R int i = phcnt - 1; i; --i) fc = qpow(c, fc + ph[i], ph[i - 1]);
104 //    printf("%d\n", fc);
105     for (R int i = 1; i <= n; ++i) scanf("%d", &a[i]);
106     build(1, 1, n);
107     for (; m; --m)
108     {
109         R int opt, l, r; scanf("%d%d%d", &opt, &l, &r);
110         if (opt == 0)
111         {
112             ql = l; qr = r;
113             modify(1, 1, n);
114         }
115         else
116         {
117             ql = l; qr = r;
118             printf("%d\n", query(1, 1, n));
119         }
120     }
121 //    fprintf(stderr, "%d\n", counter);
122     return 0;
123 }

D1T2

[Shoi2017]组合数问题

循环矩阵快速幂,做法和 4818: [Sdoi2017]序列计数 有点像。

 1 #include <cstdio>
 2 #include <algorithm>
 3 #include <cstring>
 4
 5 #define R register
 6 typedef long long ll;
 7 int k, p;
 8 typedef int Vector[60];
 9 Vector base, ans;
10 void mul(R Vector A, R Vector B)
11 {
12     R Vector C; memset(C, 0, k << 2);
13     for (R int i = 0; i < k; ++i)
14         for (R int j = 0; j < k; ++j)
15             C[(i + j) % k] = (C[(i + j) % k] + 1ll * A[i] * B[j]) % p;
16     memcpy(A, C, k << 2);
17 }
18 int main()
19 {
20     R int n, r; scanf("%d%d%d%d", &n, &p, &k, &r);
21     base[0] = 1; ++base[k - 1];
22     ans[0] = 1;
23     for (R ll power = 1ll * n * k; power; power >>= 1, mul(base, base))
24         power & 1 ? mul(ans, base), 1 : 0;
25 //    for (R int i = 0; i < k; ++i) printf("%d ", ans[i]);
26     printf("%d\n", ans[r]);
27     return 0;
28 }

D1T3

Day2

[Shoi2017]摧毁“树状图”

恶心题*2。树形DP

这题本来写了一个换根的做法结果因为太乱太复杂就推掉重新写了。(论想清楚再写的重要性)

最后参考了 SD_le 做法的题解。这位神犇的状态设计有理有据令人信服,所以我就参考了他的DP状态设计,然后自己推了一遍转移。然而推完以后还是不能1A,对拍以后才发现自己漏掉了好几种情况。。。(我好菜啊.jpg)

  1 #include <cstdio>
  2 #include <cstring>
  3
  4 #define R register
  5 #define maxn 500010
  6 struct Edge {
  7     Edge *next;
  8     int to;
  9 } *last[maxn], e[maxn << 1], *ecnt = e;
 10 inline void link(R int a, R int b)
 11 {
 12     *++ecnt = (Edge) {last[a], b}; last[a] = ecnt;
 13     *++ecnt = (Edge) {last[b], a}; last[b] = ecnt;
 14 }
 15 int f1[maxn], f2[maxn], f3[maxn], f4[maxn], g1[maxn], g2[maxn], ans;
 16 #define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0)
 17 void dfs(R int x, R int fa)
 18 {
 19     R int tf1, tf2, tf3, tf4, tg1, tg2, deg = 0, mx = 0;
 20     R bool debug = x == 1;
 21     for (R Edge *iter = last[x]; iter; iter = iter -> next)
 22         if (iter -> to != fa)
 23         {
 24             dfs(iter -> to, x); ++deg;
 25             tf1 = f1[x]; tf2 = f2[x]; tf3 = f3[x]; tf4 = f4[x]; tg1 = g1[x]; tg2 = g2[x];
 26
 27             cmax(tg1, f2[iter -> to]);
 28             cmax(tg1, g1[iter -> to] - 1);
 29
 30             cmax(tg2, g1[x] + g1[iter -> to] - 1);
 31             cmax(tg2, g1[x] + f2[iter -> to]);
 32             cmax(tg2, f4[iter -> to]);
 33             cmax(tg2, g2[iter -> to] - 1);
 34
 35
 36             cmax(tf1, f1[iter -> to] - 1);
 37
 38             cmax(tf2, f1[x] + f1[iter -> to] - 1);
 39
 40             cmax(tf3, f1[x] + f2[iter -> to] - 1);// && debug ? printf("t1 %d %d\n", iter -> to, tf3) : 0;
 41             cmax(tf3, f1[x] + g1[iter -> to] - 1);// && debug ? printf("t2 %d %d\n", iter -> to, tf3) : 0;
 42             cmax(tf3, f2[x] + f1[iter -> to] - 1);// && debug ? printf("t3 %d %d\n", iter -> to, tf3) : 0;
 43             cmax(tf3, mx + f1[iter -> to] - 2);// && debug ? printf("t4 %d %d %d\n", iter -> to, tf3) : 0;
 44             cmax(tf3, f3[iter -> to] - 1);// && debug ? printf("t5 %d %d\n", iter -> to, tf3) : 0;
 45
 46             cmax(tf4, f1[x] + f3[iter -> to] - 1);
 47             cmax(tf4, f3[x] + f1[iter -> to] - 1);
 48             cmax(tf4, f2[x] + g1[iter -> to] - 1);
 49             cmax(tf4, f2[x] + f2[iter -> to] - 1);
 50
 51             cmax(mx, f2[iter -> to]);
 52             cmax(mx, g1[iter -> to]);
 53             f1[x] = tf1; f2[x] = tf2; f3[x] = tf3; f4[x] = tf4; g1[x] = tg1; g2[x] = tg2;
 54 //            printf("f %d %d %d %d iter -> to %d %d\n", tf1, tf2, tf3, tf4, iter -> to, x);
 55         }
 56     ++g1[x]; ++g2[x];
 57     f1[x] += deg; f2[x] += deg; f3[x] += deg; f4[x] += deg;
 58     /*cmax(g1[x], 1);*/ cmax(g2[x], g1[x]);
 59     cmax(f2[x], f1[x]); cmax(f3[x], f2[x]); cmax(f4[x], f3[x]);
 60     cmax(ans, g2[x]); cmax(ans, f4[x]);
 61 //    printf("ans %d x %d\n", ans, x);
 62 //    x == 2 ? printf("f %d %d %d %d\ng %d %d\n", f1[x], f2[x], f3[x], f4[x], g1[x], g2[x]) : 0;
 63 }
 64 int main()
 65 {
 66     R int T, type; scanf("%d%d", &T, &type);
 67     for (; T; --T)
 68     {
 69         R int n; scanf("%d", &n); ans = 0;
 70         for (R int i = 1; i <= type; ++i) scanf("%*d%*d");
 71         for (R int i = 1; i < n; ++i)
 72         {
 73             R int a, b; scanf("%d%d", &a, &b); link(a, b);
 74         }
 75         if (n == 1) {puts("0"); continue;}
 76         dfs(1, 0);
 77         printf("%d\n", ans);
 78
 79         memset(last, 0, (n + 1) << 2); ecnt = e;
 80         memset(f1, 0, (n + 1) << 2);
 81         memset(f2, 0, (n + 1) << 2);
 82         memset(f3, 0, (n + 1) << 2);
 83         memset(f4, 0, (n + 1) << 2);
 84         memset(g1, 0, (n + 1) << 2);
 85         memset(g2, 0, (n + 1) << 2);
 86     }
 87     return 0;
 88 }
 89 /*
 90 1 0
 91 15
 92 1 2
 93 2 3
 94 1 4
 95 2 5
 96 1 6
 97 3 7
 98 4 8
 99 3 9
100 4 10
101 6 11
102 5 12
103 4 13
104 6 14
105 5 15
106 9
107
108 1 0
109 10
110 1 2
111 2 3
112 1 4
113 3 5
114 3 6
115 2 7
116 1 8
117 7 9
118 9 10
119 6
120
121 1 0
122 10
123 1 2
124 1 3
125 2 4
126 1 5
127 3 6
128 3 7
129 5 8
130 5 9
131 4 10
132 */

D2T1

[Shoi2017]分手是祝愿

高斯消元有95分。

先把倍数关系通过一次高斯消元转化为单个灯是否要改变。

计c[i]表示还剩下i个1时的期望步数。根据题意,对于i<=k,有c[i] = i。然后这个转移有环,所以得高斯消元。

推出来每一行只有3个变量,所以消元是线性的。因为n和模数很接近,而消元的时候又有+1,然后系数很容易就+到0了,然后就boom(爆炸熊.jpg)。

既然出题人卡了高斯消元那么我们就来考虑推推式子。(因为没有用markdown所以式子略丑请原谅。。。)

考虑我们之前推出来的递推式:c[i] = (i/n) * c[i-1] + ((n - i) / n) * c[i + 1] + 1

然后对于i=n的时候,有c[n] = c[n - 1] + 1 (1)

对于i=n-1时,有c[n-1] = 1 + ((n - 1) / n) * c[n - 2] + (1 / n) * c[n] (2)

把(1)式代入(2)式:c[n - 1] = 1 + ((n - 1) / n) * c[n - 2] + 1 / n + 1 / n * c[n - 1]

移项:((n - 1) / n) * c[n - 1] = ((n - 1) / n) * c[n - 2] + (n + 1) / n

除过去:c[n - 1] = c[n - 2] + (n + 1) / (n - 1)

只剩两项啦~于是我们猜想c[i]这个序列是一个一阶递推式,并且上一项的系数是1(这个可以用数学归纳法证)。

于是我们就只要知道递推的常数项即可。我们来强行分析一波:

设第i项的系数为x[i],而且我们已知了x[n] = 1。递推式可以写成c[i] = c[i - 1] + x[i]

我们从一开始的式子入手:c[i] = (i / n) * c[i - 1] + ((n - i) / n) * c[i + 1] + 1

代入:c[i] = (i / n) * c[i - 1] + ((n - i) / n) * (c[i] + x[i + 1]) + 1

两边乘个n然后再移项:i * c[i] = i * c[i - 1] + (n - i) * x[i + 1] + n

除个i:c[i] = c[i - 1] + ((n - i) * x[i + 1] + n) / i

这样的话连上面系数等于1的顺便也给证了。。。

所以求得x[i] = ((n - i) * x[i + 1] + n) / i。

然后递推一下就能求出c每一项的值来啦。

附代码:(95分的高斯消元在注释里面)

 1 #include <cstdio>
 2 #define R register
 3 #define maxn 100010
 4 const int mod = 1e5 + 3;
 5 int a[maxn], b[maxn], c[maxn][3], f[maxn], x[maxn], inv[maxn];
 6 inline int qpow(R int base, R int power)
 7 {
 8     R int ret = 1;
 9     for (; power; power >>= 1, base = 1ll * base * base % mod)
10         power & 1 ? ret = 1ll * ret * base % mod : 0;
11     return ret;
12 }
13 int main()
14 {
15     R int n, k, fact = 1; scanf("%d%d", &n, &k);
16     for (R int i = 1; i <= n; ++i) scanf("%d", &a[i]);
17     inv[1] = 1;
18     for (R int i = 2; i <= n; ++i)
19     {
20         fact = 1ll * fact * i % mod, inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
21 //        printf("%d %d\n", inv[i], qpow(i, mod - 2));
22     }
23     R int tmp = k, kk = 0;
24     for (R int i = n; i; --i)
25     {
26         b[i] = a[i];
27         for (R int j = i << 1; j <= n; j += i) b[i] ^= b[j];
28         kk += b[i];
29     }
30     if (kk <= k) return !printf("%d\n", 1ll * kk * fact % mod);
31 /*    c[k][0] = 1; c[k][1] = 0; c[k][2] = k;
32     for (R int i = k + 1; i <= n; ++i)
33     {
34         R int tmp = 1ll * qpow(c[i - 1][0], mod - 2) * i % mod * qpow(n, mod - 2) % mod;
35         c[i][0] = (1 + 1ll * c[i - 1][1] * tmp) % mod;
36         c[i][1] = 1ll * (mod + i - n) * qpow(n, mod - 2) % mod;
37         c[i][2] = (1 + 1ll * c[i - 1][2] * tmp) % mod;
38     }
39     for (R int i = n; i > k; --i)
40     {
41         f[i] = 1ll * (c[i][2] - 1ll * f[i + 1] * c[i][1] % mod + mod) * qpow(c[i][0], mod - 2) % mod;
42     }
43     printf("%d\n", 1ll * f[kk] * fact % mod);*/
44     x[n] = 1;
45     R int ans = k;
46     for (R int i = n - 1; i > k; --i)
47     {
48         x[i] = (1ll * x[i + 1] * (n - i) % mod * inv[n] % mod + 1) * n % mod * inv[i] % mod;
49     }
50     for (R int i = k + 1; i <= kk; ++i) (ans += x[i]) %= mod;
51     printf("%d\n", 1ll * ans * fact % mod);
52     return 0;
53 }

D2T2

[Shoi2017]寿司餐厅

最大权闭合子图。最小割。

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <algorithm>
 4
 5 #define R register
 6 #define maxn 100010
 7 #define inf 0x7fffffff
 8 #define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
 9 struct Edge {
10     Edge *next, *rev;
11     int to, cap;
12 } *last[maxn], *cur[maxn], e[maxn << 2], *ecnt = e;
13 inline void link(R int a, R int b, R int w)
14 {
15 //    printf("%d %d %d\n", a, b, w);
16     *++ecnt = (Edge) {last[a], ecnt + 1, b, w}; last[a] = ecnt;
17     *++ecnt = (Edge) {last[b], ecnt - 1, a, 0}; last[b] = ecnt;
18 }
19 int a[110], d[110][110], id1[1010], id2[1010], id[110][110];
20 int ans, s, t, q[maxn], dep[maxn];
21 inline bool bfs()
22 {
23     memset(dep, -1, (t + 1) << 2);
24     dep[q[1] = t] = 0; R int head = 0, tail = 1;
25     while (head < tail)
26     {
27         R int now = q[++head];
28         for (R Edge *iter = last[now]; iter; iter = iter -> next)
29             if (dep[iter -> to] == -1 && iter -> rev -> cap)
30                 dep[q[++tail] = iter -> to] = dep[now] + 1;
31     }
32     return dep[s] != -1;
33 }
34 int dfs(R int x, R int f)
35 {
36     if (x == t) return f;
37     R int used = 0;
38     for (R Edge* &iter = cur[x]; iter; iter = iter -> next)
39         if (iter -> cap && dep[iter -> to] + 1 == dep[x])
40         {
41             R int v = dfs(iter -> to, dmin(f - used, iter -> cap));
42             iter -> cap -= v;
43             iter -> rev -> cap += v;
44             used += v;
45             if (used == f) return f;
46         }
47     return used;
48 }
49 inline void dinic()
50 {
51     while (bfs())
52     {
53         memcpy(cur, last, sizeof cur);
54         ans += dfs(s, inf);
55     }
56 }
57 int main()
58 {
59     R int n, m, sum = 0; scanf("%d%d", &n, &m);
60     for (R int i = 1; i <= n; ++i) scanf("%d", &a[i]);
61     for (R int i = 1; i <= n; ++i) for (R int j = i; j <= n; ++j) scanf("%d", &d[i][j]);
62     R int tot = 0;
63     for (R int i = 1; i <= n; ++i)
64     {
65         for (R int j = i; j <= n; ++j)
66             id[i][j] = ++tot;
67         link(id[i][i], id1[a[i]] ? id1[a[i]] : id1[a[i]] = ++tot, a[i]);
68         m ? link(id[i][i], id2[a[i]] ? id2[a[i]] : id2[a[i]] = ++tot, inf), 1 : 0;
69     }
70     t = ++tot;
71     for (R int i = 1; i <= n; ++i)
72     {
73         for (R int j = i; j <= n; ++j)
74         {
75             d[i][j] > 0 ? link(s, id[i][j], d[i][j]), sum += d[i][j] : (link(id[i][j], t, -d[i][j]), 0);
76             i != j ? link(id[i][j], id[i + 1][j], inf), link(id[i][j], id[i][j - 1], inf), 1 : 0;
77         }
78     }
79     for (R int i = 0; i <= 1000; ++i)
80     {
81         id1[i] ? link(id1[i], t, inf), 1 : 0;
82         id2[i] ? link(id2[i], t, i * i), 1 : 0;
83     }
84     dinic();
85 //    printf("ans = %d %d\n", ans, t);
86     printf("%d\n", sum - ans);
87     return 0;
88 }

D2T3

时间: 2024-10-21 14:11:01

Shoi2017试题泛做的相关文章

Hnoi2017试题泛做

Day1 4825: [Hnoi2017]单旋 注意到二叉查找树的一个性质:其中序遍历就是所有元素按权值排序的顺序. 所以我们可以离线地把这棵树的中序遍历求出来.然后我们在插入的时候就可以用一个set来维护前驱后继,这样就可以维护出整棵树的形态. 接着我们发现将最大.最小单旋到根后,一定会有一边儿子是空的,并且剩下的子树的深度+1.于是我们就只要支持单点修改.区间加.单点查询的数据结构即可.树状数组就好了. 然后树的形态维护的时候大力判断一下就好啦. 1 #include <cstdio> 2

Cqoi2017试题泛做

Day1 4813: [Cqoi2017]小Q的棋盘 树形背包DP. 1 #include <cstdio> 2 3 #define maxn 110 4 #define R register 5 #define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0) 6 struct Edge { 7 Edge *next; 8 int to; 9 } *last[maxn], e[maxn << 1], *ecnt = e; 10 inline

「美团 CodeM 资格赛」试题泛做

LibreOJ真是吼啊! 数码 推个式子,把枚举因数转为枚举倍数.然后就发现它是根号分段的.然后每一段算一下就好了. 1 #include <cstdio> 2 #include <cstring> 3 4 #define R register 5 typedef long long ll; 6 struct Data { 7 ll num[10]; 8 inline void clear() 9 { 10 memset(num, 0, 10 << 3); 11 } 1

历年NOIP水题泛做

快noip了就乱做一下历年的noip题目咯.. noip2014 飞扬的小鸟 其实这道题并不是很难,但是就有点难搞 听说男神错了一个小时.. 就是$f_{i,j}$表示在第$i$个位置高度为$j$的时候最小点击次数 递推的话对于上升的情况只做一次,后面几次在后面再做.. #include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> using namespace st

codeforce 泛做

1A - Theatre Square 题意:有一个规模为n*m的剧院,用a*a的地板来铺满,问需要多少块木板. 思路:水题. 1 #include<iostream> 2 #include<cstring> 3 #include<cmath> 4 #include<algorithm> 5 #include<cstdlib> 6 #include<cstdio> 7 #include<vector> 8 #define

# 清北冬令营真题泛做

清北冬令营真题泛做 前言 这段时间为了准备冬令营把清北冬令营真题都做了一下.更个博回顾一下(免得你们老说我咕咕咕). 先写良心PKU的题再写THU的题, 主要是THU的题和PKU比起来真的毒瘤好多...... PKUWC2018 [PKUWC2018]Minimax 一个比较显然的暴力是归并排序,每次直接前后缀计算答案即可. 为啥不用线段树合并代替归并排序呢? 暴力线段树合并,合并的过程中顺便算一下即可,由于权值区间不交所以复杂度一个\(log\). [PKUWC2018]Slay the Sp

HAOI2015 泛做

T1 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间的距离的和的受益.问受益最大值是多少.N,K<=2000 这个树形dp不是很好想...因为贡献十分混乱... 题解十分神奇...我们记f[i][j]为i的子树有j个黑点的最大权值. 注意直接dp十分蛋疼,这个权值指的是,这个子树内部的贡献,以及i与父亲之间的边对答案的贡献(比如这条边对黑点对距离和的贡

[DynamicProgramming]动态规划题目泛做

Educational Codeforces Round 12 F 大意: 求n(n<=1011)以内恰好有4个因数的数的个数 分析: 首先一个数恰好有4个因数,说明它质因数分解之后是两个质数的乘积或是一个质数的三次方,对于后一种情况我们直接n1/3就能算出来,关键在于计算n以内有多少个数是两个素数的乘积. 设n=p1?p2,则必然有p1<n?√,p2>n?√,我们枚举p1,那么问题就在于np1 内有多少个素数. 这一点我们用dp来解决. 记pj为第j个素数,dp[n][j]为[1,n]

背包DP泛做

DP太弱了,要多做. 结果做了一堆傻逼题... 洛谷P2639: 01背包 #include <iostream> #include <cstring> #include <cstdio> #include <cmath> #define max(a, b) (a < b ? b : a) const int MAXN = 500; using namespace std; inline int read() { int x = 0, w = 1; c