字符串匹配KMP算法中Next[]数组和Nextval[]数组求法

数据结构课本上给了这么一段算法求nextval9[]数组

 1 int get_nextval(SString T,int &nextval[ ])
 2 {
 3        //求模式串T的next函数修正值并存入数组nextval。
 4        i=1; nextval[1]=0; j=0;
 5        while(i<T[0]
 6        {
 7            if(j==0||T[i]==T[j])
 8            {
 9                ++i;
10                ++j;
11                if (T[i]!=T[j])
12                    nextval[i]=j;
13                else
14                    nextval[i]=nextval[j];
15            }
16            else
17                j=nextval[j];
18        }
19 }//get_nextval

根据这段程序来求nextval的值是可以方便计算出来,但如果是应付考研试题或者期末考试就有点麻烦了。而如果记住我推荐的方法,那么任何时候都可以很方便地求解nextval了。
       首先看看next数组值的求解方法。
       例如:

模式串 a b a a b c a c
next值 0 1 1 2 2 3 1 2
nextval值                

next数组的求解方法是:第一位的next值为0,第二位的next值为1,后面求解每一位的next值时,根据前一位进行比较。首先将前一位与其next值对应的内容进行比较,如果相等,则该位的next值就是前一位的next值加上1;如果不等,向前继续寻找next值对应的内容来与前一位进行比较,直到找到某个位上内容的next值对应的内容与前一位相等为止,则这个位对应的值加上1即为需求的next值;如果找到第一位都没有找到与前一位相等的内容,那么需求的位上的next值即为1。
       看起来很令人费解,利用上面的例子具体运算一遍。
       1.前两位必定为0和1。
       2.计算第三位的时候,看第二位b的next值,为1,则把b和1对应的a进行比较,不同,则第三位a的next的值为1,因为一直比到最前一位,都没有发生比较相同的现象。
       3.计算第四位的时候,看第三位a的next值,为1,则把a和1对应的a进行比较,相同,则第四位a的next的值为第三位a的next值加上1。为2。因为是在第三位实现了其next值对应的值与第三位的值相同。
       4.计算第五位的时候,看第四位a的next值,为2,则把a和2对应的b进行比较,不同,则再将b对应的next值1对应的a与第四位的a进行比较,相同,则第五位的next值为第二位b的next值加上1,为2。因为是在第二位实现了其next值对应的值与第四位的值相同。
       5.计算第六位的时候,看第五位b的next值,为2,则把b和2对应的b进行比较,相同,则第六位c的next值为第五位b的next值加上1,为3,因为是在第五位实现了其next值对应的值与第五位相同。
       6.计算第七位的时候,看第六位c的next值,为3,则把c和3对应的a进行比较,不同,则再把第3位a的next值1对应的a与第六位c比较,仍然不同,则第七位的next值为1。
       7.计算第八位的时候,看第七位a的next值,为1,则把a和1对应的a进行比较,相同,则第八位c的next值为第七位a的next值加上1,为2,因为是在第七位和实现了其next值对应的值与第七位相同。
       在计算nextval之前要先弄明白,nextval是为了弥补next函数在某些情况下的缺陷而产生的,例如主串为“aaabaaaab”、模式串为“aaaab”那么,比较的时候就会发生一些浪费的情况:比较到主串以及模式串的第四位时,发现其值并不相等,据我们观察,我们可以直接从主串的第五位开始与模式串进行比较,而事实上,却进行了几次多余的比较。使用nextval可以去除那些不必要的比较次数。
       求nextval数组值有两种方法,一种是不依赖next数组值直接用观察法求得,一种方法是根据next数组值进行推理,两种方法均可使用,视更喜欢哪种方法而定。
       我们使用例子“aaaab”来考查第一种方法
       1.试想,在进行模式匹配的过程中,将模式串“aaaab”与主串进行匹配的时候,如果第一位就没有吻合,即第一位就不是a,那么不用比较了,赶快挪到主串的下一位继续与模式串的第一位进行比较吧,这时,模式串并没有发生偏移,那么,模式串第一位a的nextval值为0。
       2.如果在匹配过程中,到第二位才发生不匹配现象,那么主串的第一位必定是a,而第二位必定不为a,既然知道第二位一定不为a,那么主串的第一、二两位就没有再进行比较的必要,直接跳到第三位来与模式串的第一位进行比较吧,同样,模式串也没有发生偏移,第二位的nextval值仍然为0。
       3.第三位、第四位类似2的过程,均为0。
       4.如果在匹配过程中,直到第五位才发生不匹配现象,那么主串的第一位到第四位必定为a,并且第五位必定不为b,可是第五位仍然有可能等于a。如果万一第五位为a,那么既然前面四位均为a,所以,只要第六位为b,第一个字符串就匹配成功了。所以,现在的情况下,就是看第五位究竟是不是a了。所以发生了下面的比较:

1 2 3 4 5 6
a a a a * *
a a a a b  
  a a a a b

前面的三个a都不需要进行比较,只要确定主串中不等于b的那个位是否为a,即可以进行如下的比较:如果为a,则继续比较主串后面一位是否为b;如果不为a,则此次比较结束,继续将模式串的第一位去与主串的下一位进行比较。由此看来,在模式串的第五位上,进行的比较偏移了4位(不进行偏移,直接比较下一位为0),故第五位b的nextval值为4。
       我们可以利用第一个例子“abaabcac”对这种方法进行验证。
       a的nextval值为0,因为如果主串的第一位不是a,那么没有再比较下去的必要,直接比较主串的第二位是否为a。如果比较到主串的第二位才发生错误,则主串第一位肯定为a,第二位肯定不为b,此时不能直接跳到第三位进行比较,因为第二位还可能是a,所以对主串的第二位再进行一次比较,偏移了1位,故模式串第二位的nextval值为1。以此类推,nextval值分别为:01021302。其中第六位的nextval之所以为3,是因为,如果主串比较到第六位才发生不匹配现象,那么主串的前五位必定为“abaab”且第六位必定不是“c”,但第六位如果为“a”的话,那么我们就可以从模式串的第四位继续比较下去。所以,这次比较为:

1 2 3 4 5 6 7 8 9 10 11 12
a b a a b * * * * * * *
      a b a a b c a c  

而不是:

1 2 3 4 5 6 7 8 9 10 11 12
a b a a b * * * * * * *
          a b a a b c a

因为前两位a和b已经确定了,所以不需要再进行比较了。所以模式串第六位的nextval值为这次比较的偏移量3。
       再来看求nextval数组值的第二种方法

模式串 a b a a b c a c
next值 0 1 1 2 2 3 1 2
nextval值 0 1 0 2 1 3 0 2

1.第一位的nextval值必定为0,第二位如果与第一位相同则为0,如果不同则为1。
       2.第三位的next值为1,那么将第三位和第一位进行比较,均为a,相同,则,第三位的nextval值为0。
       3.第四位的next值为2,那么将第四位和第二位进行比较,不同,则第四位的nextval值为其next值,为2。
       4.第五位的next值为2,那么将第五位和第二位进行比较,相同,第二位的next值为1,则继续将第二位与第一位进行比较,不同,则第五位的nextval值为第二位的next值,为1。
       5.第六位的next值为3,那么将第六位和第三位进行比较,不同,则第六位的nextval值为其next值,为3。
       6.第七位的next值为1,那么将第七位和第一位进行比较,相同,则第七位的nextval值为0。
       7.第八位的next值为2,那么将第八位和第二位进行比较,不同,则第八位的nextval值为其next值,为2。
       在“aaaab”内进行验证。

模式串 a a a a b
next值 0 1 2 3 4
nextval值 0 0 0 0 4
时间: 2024-08-24 15:13:31

字符串匹配KMP算法中Next[]数组和Nextval[]数组求法的相关文章

字符串匹配--kmp算法原理整理

kmp算法原理:求出P0···Pi的最大相同前后缀长度k: 字符串匹配是计算机的基本任务之一.举例,字符串"BBC ABCDAB ABCDABCDABDE",里面是否包含另一个字符串"ABCDABD"? 许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一. KMP算法搜索如下: 1.首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的

字符串匹配 - KMP算法

首先大致的学习一下有限自动机字符匹配算法,然后在讨论KMP算法. 有限自动机 一个有限自动机M是一个五元组(Q,q0,A,Σ,δ),其中: Q是状态的集合, q0∈Q是初始状态, A是Q的字集,是一个接受状态集合, Σ是一个有限的输入字母表, δ是一个从Q×Σ到Q的函数,叫做转移函数. 下面定义几个相关函数: φ(w)是M在扫描字符串w后终止时的状态.函数φ有下列递归关系定义:φ(ε) = q0,φ(wa) = δ(φ(w),a), σ(x)是x的后缀中,关于P的最长前缀的长度. 字符串匹配自动

字符串匹配KMP算法的理解(详细)

1. 引言 本KMP原文最初写于2年多前的2011年12月,因当时初次接触KMP,思路混乱导致写也写得混乱.所以一直想找机会重新写下KMP,但苦于一直以来对KMP的理解始终不够,故才迟迟没有修改本文. 然近期因开了个算法班,班上专门讲解数据结构.面试.算法,才再次仔细回顾了这个KMP,在综合了一些网友的理解.以及算法班的两位讲师朋友曹博.邹博的理解之后,写了9张PPT,发在微博上.随后,一不做二不休,索性将PPT上的内容整理到了本文之中(后来文章越写越完整,所含内容早已不再是九张PPT 那样简单

数据结构与算法简记--字符串匹配KMP算法

KMP算法 比较难理解,准备有时间专门啃一下. 核心思想与BM算法一样:假设主串是 a,模式串是 b.在模式串与主串匹配的过程中,当遇到不可匹配的字符的时候,我们希望找到一些规律,可以将模式串往后多滑动几位,跳过那些肯定不会匹配的情况. 不同的是:在模式串和主串匹配的过程中,把不能匹配的那个字符仍然叫作坏字符,把已经匹配的那段字符串叫作好前缀. 关键找相等的最长匹配前缀和最长匹配后缀.有两种情况,(1)如果b[i-1]的最长前缀下一个字符与b[i]相等,则next[i]=next[i-1]+1.

字符串匹配KMP算法C++代码实现

看到了一篇关于<字符串匹配的KMP算法>(见下文)的介绍,地址:http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html,这篇博客对KMP算法的解释很清晰,但缺点是没有代码的实现.所以本人根据这位大神的思路写了一下算法的C++实现. C++代码如下: #include <iostream> #include<string.h> using namesp

字符串匹配KMP算法实现

由于KMP算法比较难,所以建议初学者分两个阶段学习. 第一个阶段先理解算法思想,可以参考这篇文章:点击打开链接 第二个阶段,理解算法的具体实现,本文主要讲解这部分,需要注意的地方都在程序里了,自己看吧 程序(调试通过): #include <stdio.h> #include <string.h> int KMP(char* s, char* pattern, int start, int next[]); void get_new_next(char* pattern, int

字符串匹配KMP算法

1. 字符串匹配的KMP算法 2. KMP算法详解 3. 从头到尾彻底理解KMP

字符串匹配-KMP算法学习笔记

参考文章: 1.字符串匹配的KMP算法 2.KMP算法详解 3.从头到尾彻底理解KMP 版权声明:本文为博主原创文章,未经博主允许不得转载.

【数据结构与算法】字符串匹配KMP算法

首先需要了解一下BF暴力匹配算法,这个算法为每一个串设置一个指针,然后两个指针同时后移,出现不匹配的情况后,主串指针回到开始后移之前的位置的下一位,模式串指针回到最开始. 对比一下KMP算法,同样是设置两个指针,然后两个指针同时后移,出现不匹配的情况后,主串指针不变,模式串指针回溯一定的距离.具体模式串指针回溯多少,是第一次看KMP算法的人比较难以理解的,其实仔细想想,模式串的前缀和后缀其实也是在做匹配,当P[K]!=P[J]时就是失配,那么前缀的指针就需要回溯,所以后k=next[k]. 代码