LightOJ1122 Digit Count(DP)

dp[i][j]表示长度i末尾为S[j]的方案数

dp[1][0...m-1]=1

dp[i][j]=∑dp[i-1][k] (|S[k]-S[j]|<=2)

 1 #include<cstdio>
 2 #include<cstdlib>
 3 #include<cstring>
 4 using namespace std;
 5 int d[11][11];
 6 int main(){
 7     int t,n,m,a[11];
 8     scanf("%d",&t);
 9     for(int cse=1; cse<=t; ++cse){
10         scanf("%d%d",&n,&m);
11         for(int i=0; i<n; ++i) scanf("%d",a+i);
12         memset(d,0,sizeof(d));
13         for(int i=0; i<n; ++i) d[1][i]=1;
14         for(int i=2; i<=m; ++i){
15             for(int j=0; j<n; ++j){
16                 for(int k=0; k<n; ++k){
17                     if(abs(a[j]-a[k])<=2) d[i][j]+=d[i-1][k];
18                 }
19             }
20         }
21         int res=0;
22         for(int i=0; i<n; ++i) res+=d[m][i];
23         printf("Case %d: %d\n",cse,res);
24     }
25     return 0;
26 }
时间: 2024-10-03 14:55:52

LightOJ1122 Digit Count(DP)的相关文章

[LeetCode] Longest Consecutive Sequence(DP)

Given an unsorted array of integers, find the length of the longest consecutive elements sequence. For example,Given [100, 4, 200, 1, 3, 2], The longest consecutive elements sequence is [1, 2, 3, 4]. Return its length: 4. Your algorithm should run in

BZOJ 2298 problem a(DP)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2298 题意:一次考试共有n个人参加,第i个人说:“有ai个人分数比我高,bi个人分数比我低.”问最少有几个人没有说真话(可能有相同的分数) 思路:对于第i个人来说,区间[ai+1,n-bi]的人的分数相同.那么我们用sum[L][R]表示区间[L,R]中总人数.用f[i]表示前i个人中说真话的最大人数,那么f[j]=max(f[i-1]+sum[i][j]). map<pair<in

[LeetCode] Distinct Subsequences(DP)

Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative

hdu 5623 KK&#39;s Number(dp)

问题描述 我们可爱的KK有一个有趣的数学游戏:这个游戏需要两个人,有N\left(1\leq N\leq 5*{10}^{4} \right)N(1≤N≤5∗10?4??)个数,每次KK都会先拿数.每次可以拿任意多个数,直到NN个数被拿完.每次获得的得分为取的数中的最小值,KK和对手的策略都是尽可能使得自己的得分减去对手的得分更大.在这样的情况下,最终KK的得分减去对手的得分会是多少? 输入描述 第一行一个数T\left( 1\leq T\leq 10\right)T(1≤T≤10),表示数据组

Ural 1353 Milliard Vasya&#39;s Function(DP)

题目地址:Ural 1353 定义dp[i][j],表示当前位数为i位时,各位数和为j的个数. 对于第i位数来说,总可以看成在前i-1位后面加上一个0~9,所以状态转移方程就很容易出来了: dp[i][j]=dp[i][j]+dp[i][j-1]+dp[i][j-2]+.......+dp[i][j-9]: 最后统计即可. 代码如下: #include <iostream> #include <cstdio> #include <string> #include <

HDU 4908 (杭电 BC #3 1002题)BestCoder Sequence(DP)

题目地址:HDU 4908 这个题是从m开始,分别往前DP和往后DP,如果比m大,就比前面+1,反之-1.这样的话,为0的点就可以与m这个数匹配成一个子串,然后左边和右边的相反数的也可以互相匹配成一个子串,然后互相的乘积最后再加上就行了.因为加入最终两边的互相匹配了,那就说明左右两边一定是偶数个,加上m就一定是奇数个,这奇数个的问题就不用担心了. 代码如下: #include <iostream> #include <stdio.h> #include <string.h&g

Sicily 1146:Lenny&#39;s Lucky Lotto(dp)

题意:给出N,M,问有多少个长度为N的整数序列,满足所有数都在[1,M]内,并且每一个数至少是前一个数的两倍.例如给出N=4, M=10, 则有4个长度为4的整数序列满足条件: [1, 2, 4, 8], [1, 2, 4, 9], [1, 2, 4, 10], [1, 2, 5, 10] 分析:可用动态规划解题,假设dp[i][j],代表满足以整数i为尾数,长度为j的序列的个数(其中每一个数至少是前一个数的两倍).那么对于整数i,dp[i][j] 等于所有dp[k][j-1]的和,其中k满足:

UVA542 - France &#39;98(dp)

UVA542 - France '98(dp) 题目链接 题目大意:之前题目意思还以为看懂了,其实没看明白,它已经把各个选手分在各自所在的区域里面,这就意味着第一次的PK的分组已经确定,而且冠军必须是从两个左右分区出来的胜利者才有机会pk冠军. 解题思路:那么从1-16这个大的区间内诞生出来的冠军可能是来自左边,也可能是右边,然后再左边右边的子区间递归找出冠军.f[i][l][r]表示l-r这个区间的胜利者是i的概率,那么假设i在区间的最左边,f[i][l][r] = Sum(f[i][l][m

HDU 4968 Improving the GPA(dp)

HDU 4968 Improving the GPA 题目链接 dp,最大最小分别dp一次,dp[i][j]表示第i个人,还有j分的情况,分数可以减掉60最为状态 代码: #include <cstdio> #include <cstring> #include <algorithm> using namespace std; int t, avg, n; double dp1[15][405], dp2[15][405]; double get(int x) { if