POJ 1655 Balancing Act【树的重心】

Balancing Act

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 14251   Accepted: 6027

Description

Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T.
For example, consider the tree:

Deleting node 4 yields two trees whose member nodes are {5} and
{1,2,3,6,7}. The larger of these two trees has five nodes, thus the
balance of node 4 is five. Deleting node 1 yields a forest of three
trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has
two nodes, so the balance of node 1 is two.

For each input tree, calculate the node that has the minimum
balance. If multiple nodes have equal balance, output the one with the
lowest number.

Input

The
first line of input contains a single integer t (1 <= t <= 20),
the number of test cases. The first line of each test case contains an
integer N (1 <= N <= 20,000), the number of congruence. The next
N-1 lines each contains two space-separated node numbers that are the
endpoints of an edge in the tree. No edge will be listed twice, and all
edges will be listed.

Output

For
each test case, print a line containing two integers, the number of the
node with minimum balance and the balance of that node.

Sample Input

1
7
2 6
1 2
1 4
4 5
3 7
3 1

Sample Output

1 2

Source

POJ Monthly--2004.05.15 IOI 2003 sample task

题目链接:http://poj.org/problem?id=1655

题目很好理解,就是去掉树上的一个节点,看看剩下的子树中最大的是多少,然后在这些最大值中求一个最小值,如果有多个点都是最小值,那么找一个序号最小的节点。输出节点号,和最小值。

经过简单分析,DFS深度优先搜索可以解决,只需要求出每个节点下子树的总结点个数即可。

这题其实是求重心的裸题!

举例说明:

设有一棵树20个节点,其中有一个节点为u,u有两个孩子节点,设u以下有10个节点,两个孩子分别有6和4个节点,那么对于u来说,最大是多少,应该是20 - 10,6,4中的最大的也就是10.这样等把所有节点的最大值求出后,再求1-n中的最小值,输出该点以及最小值即可。

算法就是DFS,计算出每个节点下的总数,然后保留本节点下的孩子节点子树中的最大值,然后和自己的祖先节点比较求出最大值,最后枚举最小值。

这题一定要建一个双向图,因为树是无向的。

下面是AC代码:

 1 #include <stdio.h>
 2 #include <string.h>
 3 #define max(a,b) (a)>(b)?(a):(b)
 4 const int maxn=20010;
 5 struct Edge//前向星存边
 6 {
 7     int to,next;
 8 }edge[maxn<<1];//保存双向图
 9 int head[maxn],tot;
10 inline void init()//初始化操作
11 {
12     memset(head,-1,sizeof(head));
13     tot=0;
14 }
15 inline void addedge(int u,int v)//加边
16 {
17     edge[tot].to=v;
18     edge[tot].next=head[u];
19     head[u]=tot++;
20 }
21 int dp[maxn];//每个节点去掉后其他子树的点数
22 int num[maxn];//每个节点下的节点总数
23 int n;
24 inline void DFS(int u,int pre)
25 {
26     dp[u]=0;//初始化
27     num[u]=1;//初始化
28     for(int i=head[u];i!=-1;i=edge[i].next)
29     {
30         int v=edge[i].to;
31         if(v==pre)
32             continue;
33         DFS(v,u);
34         dp[u]=max(dp[u],num[v]);//求根节点下儿子节点中的最大值
35         num[u]+=num[v];//求根节点下的所有节点数
36     }
37     dp[u]=max(dp[u],n-num[u]);//祖先节点总数的最大值和根节点下儿子节点中的最大值作为本节点的最大值
38 }
39 int main()
40 {
41     int T;
42     scanf("%d",&T);
43     int u,v;
44     while(T--)
45     {
46         scanf("%d",&n);
47         init();
48         for(int i=1;i<n;i++)//建图
49         {
50             scanf("%d%d",&u,&v);
51             addedge(u,v);
52             addedge(v,u);
53         }
54         DFS(1,-1);
55         int ans1=1,ans2=dp[1];
56         for(int i=2;i<=n;i++)//求最小值
57         {
58             if(ans2>dp[i])
59             {
60                 ans1=i;
61                 ans2=dp[i];
62             }
63         }
64         printf("%d %d\n",ans1,ans2);
65     }
66     return 0;
67 }
时间: 2024-10-14 07:38:30

POJ 1655 Balancing Act【树的重心】的相关文章

POJ 1655 Balancing Act 树的重心 基础题

Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10347   Accepted: 4285 Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or m

POJ 1655 Balancing Act[树的重心/树形dp]

Balancing Act 时限:1000ms Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree

POJ 1655 Balancing Act (树的重心)

题目地址:POJ 1655 树的重心定义为:找到一个点,其所有的子树中最大的子树节点数最少,那么这个点就是这棵树的重心,删去重心后,生成的多棵树尽可能平衡. 树的重心可以用树形DP快速的找出来. 代码如下: #include <iostream> #include <string.h> #include <math.h> #include <queue> #include <algorithm> #include <stdlib.h>

poj 1655 Balancing Act 【树的重心】

知识点:树的重心 定义:以这个点为根,那么所有的子树(不算整个树自身)的大小都不超过整个树大小的一半. 性质: 性质 1 :树中所有点到某个点的距离和中,到重心的距离和是最小的,如果有两个距离和,他们的距离和一样. 性质 2 :把两棵树通过某一点相连得到一颗新的树,新的树的重心必然在连接原来两棵树重心的路径上. 性质 3 :一棵树添加或者删除一个节点,树的重心最多只移动一条边的位置. 题目:poj 1655 Balancing Act 题意:给出一颗树,求树的重心点以及重心点删除后中的最大子树.

poj 1655 Balancing Act 求树的重心【树形dp】

poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好明白了,不仅要考虑当前结点子树的大小,也要"向上"考虑树的大小. 那么其它就dfs完成就行了,son[] 存以前结点为根的结点个数. 这是用邻接表写: 1 #include<iostream> 2 #include<cstdio> 3 #include<cst

『Balancing Act 树的重心』

树的重心 我们先来认识一下树的重心. 树的重心也叫树的质心.找到一个点,其所有的子树中最大的子树节点数最少,那么这个点就是这棵树的重心,删去重心后,生成的多棵树尽可能平衡. 根据树的重心的定义,我们可以通过树形DP来求解树的重心. 设\(Max_i\)代表删去i节点后树中剩下子树中节点最多的一个子树的节点数.由于删去节点i至少将原树分为两部分,所以满足\(\ \frac{1}{2} \leq Max_i\),我们要求的就是一个\(i\),使得\(Max_i\)最小. 对于Max数组,我们可以列出

POJ 1655 Balancing Act (树形dp 树的重心)

Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10596   Accepted: 4398 Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or m

POJ 1655 Balancing Act(树的重心)

Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14062   Accepted: 5937 Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or m

POJ 1655 Balancing Act (求树的重心)

求树的重心,直接当模板吧.先看POJ题目就知道重心什么意思了... 重心:删除该节点后最大连通块的节点数目最小 1 #include<cstdio> 2 #include<cstring> 3 #include<iostream> 4 #include<queue> 5 #include<stack> 6 using namespace std; 7 #define LL long long 8 #define clc(a,b) memset(a