常用算法时间复杂度的计算方法

1. 时间复杂度

  时间复杂度是指程序运行从开始到结束所需要的时间。时间复杂度的计算一般比较麻烦,故在数据结构的研究中很少提及时间复杂度。为了便于比较同一个问题的不同算法,通常做法是,从算法中选取一种对于所研究的问题来说是基本操作的原操作,以该基本操作重复执行的次数做为算法的时间量度。基本操作应是其重复执行次数和算法时间成正比的原操作,多数情况下它是最深层循环内的语句中的操作。算法的执行次数还要随输入集有关,此时要考虑所有可能输入数据的期望值,此时的算法时间复杂度叫平均时间复杂度。有事平均时间复杂度难以确定,此时分析最坏情况下算法的一个上界,此时称为最坏时间复杂度。

2. 时间复杂度的表示方法

  设解决一个问题的规模为n,基本操作被重复执行次数是n的一个函数f(n),则时间复杂度可记作: T(n)=O(f(n)) 它表示随着问题规模n的增长,算法执行时的增长率和f(n)的增长率相同。其中T(n)叫算法的渐进时间复杂度,简称时间复杂度。算法的时间复杂度考虑的只是对于问题规模n的增长率,则在难以精确计算的情况下,只需考虑它关于n的增长率或阶即可。

  例如 

 for(i=2;i<=n;++i)
   for(j=2;j<=i-1;++j)
   {    ++x;    a[i,j]=x;   }

  其中++x语句频度为:1+2+3+…+n-2=(n-1)(n-2)/2=(n2-3n+2)/2故算法的时间复杂度可表示为:T(n)=O(n2)

3. 时间复杂度的计算方法

  时间复杂的推导方法一般如下:

  第一步:用常数1取代运行时间中的所有加法常数。

  第二步:在修改后的运行次数函数中,只保留最高阶项。

  第三步:如果最高阶项存在且不是1,则去除与这个项相乘的常数。

  时间复杂度一般分为以下几种,分别是:

  (1)常数阶 首先顺序结构的时间复杂度。 

main()
{
    int sum=0,n=100;
    sum=(1+n)*n/2;
    printf(“%d”,sum);
}

算法的时间复杂度为O(1)。 这个算法的运行次数函数是f(n)=3。根据我们推导的方法,第一步就是把常数项3改为1。在保留最高阶项时发现,它根本没有最高阶项,所以这个算法的时间复杂度为O(1)。

  (2)线性阶 要确定某个算法的阶次,需要确定某个特定语句或某个语句集运行的次数。因此,要分析算法的复杂度,关键就是要分析循环结构的运行情况。 

int i; for(i=0;i<n;i++)
{
  /*时间复杂度为O(1)的程序步骤序列*/
}

  (3)对数阶

int count=1;
while(count<n)
{ count=count*2; /*时间复杂度为O(1)的程序步骤序列*/}
  由于每次count乘以2之后,就距离n更近了一点。也就是说,有多少个2相乘后大于n,则会退出循环。由2x=n得到x=log2n。所以这个循环的时间复杂度为O(log2n)。 (4)平方阶
inti,j;
for(i=0;i<n;i++)
{
    for(j=0;j<n;j++)
    { /*时间复杂度为O(1)的程序步骤序列*/
     }
} 

循环的时间复杂度等于循环体的复杂度乘以该循环运行的次数。间复杂度为O(n2)。

4. 总结

  本文主要讨论算法的时间复杂度,算法时间复杂度在数据结构中是比较难的问题,通过本文给出的计算时间复杂度的方法,能够比较容易掌握时间复杂的计算。

时间: 2024-10-10 01:12:57

常用算法时间复杂度的计算方法的相关文章

常用排序算法时间复杂度和空间复杂度简析

1. preface /**** *    This article will try to explain something about: *        --Bubble sort. *        --Quick sort. *        --Merge sort. *        --Heap sort. *    To read this, some prerequisites is necessary: *        --a survive skill in C pr

Python常用算法

本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例 1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出.如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题.不同的算法可能用不同的时间.空间或效率来完成同样的任务.一个算法的优劣可以用空间复杂度与时间复杂度来衡量. 一个算法应该具有以下七个重要的特征: ①有穷性(Fin

Python之路,Day21 - 常用算法学习

Python之路,Day21 - 常用算法学习 本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例 1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出.如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题.不同的算法可能用不同的时间.空间或效率来完成同样的任务.一个算法的优劣可以用空间复杂度与时间复杂度来衡量. 一个算

特征选择常用算法综述

特征选择的一般过程: 1.生成子集:搜索特征子集,为评价函数提供特征子集 2.评价函数:评价特征子集的好坏 3.停止准则:与评价函数相关,一般是阈值,评价函数达到一定标准后就可停止搜索 4.验证过程:在验证数据集上验证选出来的特征子集的有效性 1.生成子集 搜索算法有 完全搜索.启发式搜索.随机搜索 三大类. (1)完全搜索 <1>宽搜(Breadth First Search):时间复杂度高,不实用 <2>分支界限搜索(Branch and Bound):其实就是宽搜加上深度的限

算法时间复杂度的计算 [整理]

基本的计算步骤 时间复杂度的定义 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数.记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度. 根据定义,可以归纳出基本的计算步骤 1. 计算出基本操作的执行次数T(n) 基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语

算法时间复杂度计算

概述 ??一个算法是由控制结构(顺序,分支,循环)和原操作(指固有数据类型的操作)构成.为了便于比较同一问题的不同算法,通常的做法是,从算法中选取一种对所研究的问题来说是基本操作的原操作,以该基本原操作重复执行的次数作为算法的时间度量.多数情况下,基本原操作是它最深层循环中的原操作,对算法的时间度量最常用的是考虑在最坏的情况下时间复杂度. 时间复杂度的定义 ??算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)

数据库索引设计的几个常用算法

参考:http://blog.csdn.net/yangbutao/article/details/8372511 B+.B- Tree(mysql,oracle,mongodb)      主要用在关系数据库的索引中,如oracle,mysql innodb:mongodb中的索引也是B-树实现的:还有HBase中HFile中的DataBlock的索引等等. 动态查找树主要有:二叉查找树(Binary Search Tree),平衡二叉查找树(Balanced Binary Search Tr

计算算法时间复杂度的主方法的一种较为简洁的记忆方法

这阵子在认真地看着算法导论,之前看到第四章计算分治法的时间复杂度的计算方法被称为“主方法”,运用这个主方法可以快速地口算出分治算法的递归式的时间复杂度,以下给出算法导论里关于主方法的描述吧,我就直接截图 不得不说,算法导论是一本非常偏向于数学的算法书,里面的对于各种算法结论的正确性大都有着严格的数学上的推导.之前对于主方法的描述只是大略地看了一下,看是看懂了,但是当时没有刻意将这个结论记下来,当我往后看遇到递归式求解部分的时候发觉还是忘记了主方法的求解过程,只能模糊记得部分而已,昨天晚上再复习的

【常用算法思路分析系列】字符串高频题集

本文是[常用算法思路分析系列]的第二篇,分析字符串相关的高频题目.第一篇是关于排序相关的高频题,还没有看的同学请移步:[常用算法思路分析系列]排序高频题集 1.KMP字符匹配 对于两棵彼此独立的二叉树A和B,请编写一个高效算法,检查A中是否存在一棵子树与B树的拓扑结构完全相同,即给定两棵二叉树的头结点A和B,请返回一个boolean值,代表A中是否存在一棵同构于B的子树.上述其实就是一个字符匹配的问题,我们将A.B两棵二叉树进行遍历,得到一个字符串,就是判断B串是否是A串的子串.而字符匹配常用的