ZooKeeper 典型的应用场景

Zookeeper 从设计模式角度来看,是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生变化,Zookeeper 就将负责通知已经在 Zookeeper 上注册的那些观察者做出相应的反应,从而实现集群中类似 Master/Slave 管理模式,关于 Zookeeper 的详细架构等内部细节可以阅读 Zookeeper 的源码

下面详细介绍这些典型的应用场景,也就是 Zookeeper 到底能帮我们解决那些问题?下面将给出答案。

统一命名服务(Name Service)

分布式应用中,通常需要有一套完整的命名规则,既能够产生唯一的名称又便于人识别和记住,通常情况下用树形的名称结构是一个理想的选择,树形的名称结构是一个有层次的目录结构,既对人友好又不会重复。说到这里你可能想到了 JNDI,没错 Zookeeper 的 Name Service 与 JNDI 能够完成的功能是差不多的,它们都是将有层次的目录结构关联到一定资源上,但是 Zookeeper 的 Name Service 更加是广泛意义上的关联,也许你并不需要将名称关联到特定资源上,你可能只需要一个不会重复名称,就像数据库中产生一个唯一的数字主键一样。

Name Service 已经是 Zookeeper 内置的功能,你只要调用 Zookeeper 的 API 就能实现。如调用 create 接口就可以很容易创建一个目录节点。

配置管理(Configuration Management)

配置的管理在分布式应用环境中很常见,例如同一个应用系统需要多台 PC Server 运行,但是它们运行的应用系统的某些配置项是相同的,如果要修改这些相同的配置项,那么就必须同时修改每台运行这个应用系统的 PC Server,这样非常麻烦而且容易出错。

像这样的配置信息完全可以交给 Zookeeper 来管理,将配置信息保存在 Zookeeper 的某个目录节点中,然后将所有需要修改的应用机器监控配置信息的状态,一旦配置信息发生变化,每台应用机器就会收到 Zookeeper 的通知,然后从 Zookeeper 获取新的配置信息应用到系统中。

图 2. 配置管理结构图

集群管理(Group Membership)

Zookeeper 能够很容易的实现集群管理的功能,如有多台 Server 组成一个服务集群,那么必须要一个“总管”知道当前集群中每台机器的服务状态,一旦有机器不能提供服务,集群中其它集群必须知道,从而做出调整重新分配服务策略。同样当增加集群的服务能力时,就会增加一台或多台 Server,同样也必须让“总管”知道。

Zookeeper 不仅能够帮你维护当前的集群中机器的服务状态,而且能够帮你选出一个“总管”,让这个总管来管理集群,这就是 Zookeeper 的另一个功能 Leader Election。

它们的实现方式都是在 Zookeeper 上创建一个 EPHEMERAL 类型的目录节点,然后每个 Server 在它们创建目录节点的父目录节点上调用 getChildren(String path,
boolean watch) 方法并设置 watch 为 true,由于是 EPHEMERAL 目录节点,当创建它的 Server 死去,这个目录节点也随之被删除,所以 Children 将会变化,这时 getChildren上的
Watch 将会被调用,所以其它 Server 就知道已经有某台 Server 死去了。新增 Server 也是同样的原理。

Zookeeper 如何实现 Leader Election,也就是选出一个 Master Server。和前面的一样每台 Server 创建一个 EPHEMERAL 目录节点,不同的是它还是一个 SEQUENTIAL 目录节点,所以它是个 EPHEMERAL_SEQUENTIAL 目录节点。之所以它是 EPHEMERAL_SEQUENTIAL 目录节点,是因为我们可以给每台 Server 编号,我们可以选择当前是最小编号的 Server 为 Master,假如这个最小编号的 Server 死去,由于是 EPHEMERAL
节点,死去的 Server 对应的节点也被删除,所以当前的节点列表中又出现一个最小编号的节点,我们就选择这个节点为当前 Master。这样就实现了动态选择 Master,避免了传统意义上单 Master 容易出现单点故障的问题。

图 3. 集群管理结构图

这部分的示例代码如下,完整的代码请看附件:

清单 3. Leader Election
关键代码

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

void findLeader() throws InterruptedException {

byte[] leader = null;

try {

leader = zk.getData(root + "/leader", true, null);

} catch (Exception e) {

logger.error(e);

}

if (leader != null) {

following();

} else {

String newLeader = null;

try {

byte[] localhost = InetAddress.getLocalHost().getAddress();

newLeader = zk.create(root + "/leader", localhost,

ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);

} catch (Exception e) {

logger.error(e);

}

if (newLeader != null) {

leading();

} else {

mutex.wait();

}

}

}

共享锁(Locks)

共享锁在同一个进程中很容易实现,但是在跨进程或者在不同 Server 之间就不好实现了。Zookeeper 却很容易实现这个功能,实现方式也是需要获得锁的 Server 创建一个 EPHEMERAL_SEQUENTIAL 目录节点,然后调用 getChildren方法获取当前的目录节点列表中最小的目录节点是不是就是自己创建的目录节点,如果正是自己创建的,那么它就获得了这个锁,如果不是那么它就调用exists(String path, boolean watch) 方法并监控 Zookeeper 上目录节点列表的变化,一直到自己创建的节点是列表中最小编号的目录节点,从而获得锁,释放锁很简单,只要删除前面它自己所创建的目录节点就行了。
图 4. Zookeeper 实现 Locks 的流程图

同步锁的实现代码如下,完整的代码请看附件:
清单 4. 同步锁的关键代码

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

voidgetLock()throwsKeeperException,InterruptedException{

List<String>list=zk.getChildren(root,false);

String[]nodes=list.toArray(newString[list.size()]);

Arrays.sort(nodes);

if(myZnode.equals(root+"/"+nodes[0])){

doAction();

}

else{

waitForLock(nodes[0]);

}

}

voidwaitForLock(Stringlower)throwsInterruptedException,KeeperException{

Statstat=zk.exists(root+"/"+lower,true);

if(stat!=null){

mutex.wait();

}

else{

getLock();

}

}

队列管理

Zookeeper 可以处理两种类型的队列:

  1. 当一个队列的成员都聚齐时,这个队列才可用,否则一直等待所有成员到达,这种是同步队列。
  2. 队列按照 FIFO 方式进行入队和出队操作,例如实现生产者和消费者模型。

同步队列用 Zookeeper 实现的实现思路如下:

创建一个父目录 /synchronizing,每个成员都监控标志(Set Watch)位目录 /synchronizing/start 是否存在,然后每个成员都加入这个队列,加入队列的方式就是创建 /synchronizing/member_i 的临时目录节点,然后每个成员获取 / synchronizing 目录的所有目录节点,也就是 member_i。判断 i 的值是否已经是成员的个数,如果小于成员个数等待 /synchronizing/start 的出现,如果已经相等就创建 /synchronizing/start。

用下面的流程图更容易理解:

图 5. 同步队列流程图

同步队列的关键代码如下,完整的代码请看附件:

清单 5. 同步队列

1

2

3

4

5

6

7

8

9

10

11

12

13

14

void addQueue() throws KeeperException, InterruptedException{

zk.exists(root + "/start",true);

zk.create(root + "/" + name, new byte[0], Ids.OPEN_ACL_UNSAFE,

CreateMode.EPHEMERAL_SEQUENTIAL);

synchronized (mutex) {

List<String> list = zk.getChildren(root, false);

if (list.size() < size) {

mutex.wait();

} else {

zk.create(root + "/start", new byte[0], Ids.OPEN_ACL_UNSAFE,

CreateMode.PERSISTENT);

}

}

}

当队列没满是进入 wait(),然后会一直等待 Watch 的通知,Watch 的代码如下:

1

2

3

4

5

6

7

8

publicvoidprocess(WatchedEventevent){

if(event.getPath().equals(root+"/start")&&

event.getType()==Event.EventType.NodeCreated){

System.out.println("得到通知");

super.process(event);

doAction();

}

}

FIFO 队列用 Zookeeper 实现思路如下:

实现的思路也非常简单,就是在特定的目录下创建 SEQUENTIAL 类型的子目录 /queue_i,这样就能保证所有成员加入队列时都是有编号的,出队列时通过 getChildren( ) 方法可以返回当前所有的队列中的元素,然后消费其中最小的一个,这样就能保证 FIFO。

下面是生产者和消费者这种队列形式的示例代码,完整的代码请看附件:

清单 6. 生产者代码

1

2

3

4

5

6

7

8

9

boolean produce(int i) throws KeeperException, InterruptedException{

ByteBuffer b = ByteBuffer.allocate(4);

byte[] value;

b.putInt(i);

value = b.array();

zk.create(root + "/element", value, ZooDefs.Ids.OPEN_ACL_UNSAFE,

CreateMode.PERSISTENT_SEQUENTIAL);

return true;

}

清单 7. 消费者代码

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

intconsume()throwsKeeperException,InterruptedException{

intretvalue=-1;

Statstat=null;

while(true){

synchronized(mutex){

List<String>list=zk.getChildren(root,true);

if(list.size()==0){

mutex.wait();

}else{

Integermin=newInteger(list.get(0).substring(7));

for(Strings:list){

IntegertempValue=newInteger(s.substring(7));

if(tempValue<min)min=tempValue;

}

byte[]b=zk.getData(root+"/element"+min,false,stat);

zk.delete(root+"/element"+min,0);

ByteBufferbuffer=ByteBuffer.wrap(b);

retvalue=buffer.getInt();

returnretvalue;

}

}

}

}

时间: 2024-10-01 06:46:24

ZooKeeper 典型的应用场景的相关文章

搞懂分布式技术6:Zookeeper典型应用场景及实践

搞懂分布式技术6:Zookeeper典型应用场景及实践 一.ZooKeeper典型应用场景实践 ZooKeeper是一个高可用的分布式数据管理与系统协调框架.基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题.网上对ZK的应用场景也有不少介绍,本文将介绍比较常用的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍. 值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利用其提

zookeeper典型应用场景之一:master选举

对于zookeeper这种东西,仅仅知道怎么安装是远远不够的,至少要对其几个典型的应用场景进行了解,才能比较全面的知道zk究竟能干啥,怎么玩儿,以后的日子里才能知道这货如何能为我所用.于是,有了如下的学习: 我们知道zookeeper可以用于搭建高可用服务框架,主要先看以下几个应用场景:1. master的选举基本思路和编码实现2. 数据的发布和订阅3. 软负载均衡4. 分布式队列5. 分布式锁6. 命名服务 目前zookeeper常用的开发包有zkclient跟curator,后者更为方便,日

ZooKeeper典型应用场景(转)

ZooKeeper是一个高可用的分布式数据管理与系统协调框架.基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题.网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍. 值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利用其提供的一系列API接口(或者称为原语集),摸索出来的典型使用方法.因此,也非常欢迎读者分享你在ZK

zooKeeper 典型应用场景一览

http://nileader.blog.51cto.com/1381108/1040007 转载请用注明 @ni掌柜  [email protected] ZooKeeper是一个高可用的分布式数据管理与系统协调框架.基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题.网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍. 值得注意的是,ZK并非天生就是为这

ZooKeeper典型应用场景一览

ZooKeeper典型应用场景一览 数据发布与订阅(配置中心) 发布与订阅模型,即所谓的配置中心,顾名思义就是发布者将数据发布到ZK节点上,供订阅者动态获取数据,实现配置信息的集中式管理和动态更新.例如全局的配置信息,服务式服务框架的服务地址列表等就非常适合使用. 应用中用到的一些配置信息放到ZK上进行集中管理.这类场景通常是这样:应用在启动的时候会主动来获取一次配置,同时,在节点上注册一个Watcher,这样一来,以后每次配置有更新的时候,都会实时通知到订阅的客户端,从来达到获取最新配置信息的

ZooKeeper典型使用场景一览

ZooKeeper是一个高可用的分布式数据管理与系统协调框架.基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得zookeeper能够应用于很多场景.zk的使用场景进行归类介绍: 场景类别 典型场景描述(ZK特性,使用方法) 应用中的具体使用 数据发布与订阅 发布与订阅即所谓的配置管理,顾名思义就是有系统将数据发布到zk节点上,供订阅者动态获取数据,实现配置信息的集中式管理和动态更新.例如全局的配置信息,地址列表等就非常适合使用.(Diamond和C

ZooKeeper典型应用场景

ZooKeeper是一个高可用的分布式数据管理与系统协调框架.基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题.网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍. 值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利用其提供的一系列API接口(或者称为原语集),摸索出来的典型使用方法.因此,也非常欢迎读者分享你在ZK

ZooKeeper典型应用(一)

查看PDF版本 转载请用注明 @ni掌柜 [email protected]    @ni掌柜的ZooKeeper系列请看 http://nileader.blog.51cto.com/1381108/d-16 ZooKeeper是一个高可用的分布式数据管理与系统协调框架.基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题.网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一

典型用户和场景

分析我们psp表的典型用户和场景 老师: (1)姓名:王建民 (2)年龄:35 (3)收入:不详 (4)代表的用户在市场上的比例和重要性:我们软件针对于信息学院学生,比例大概为1:200,老师是检查学生能力的人员,是不可或缺的存在. (5)使用这个软件的典型场景:查看学生最近的个人能力记录. (6)使用本软件/服务的环境 :学校,公交,任何地点 (7)生活/工作情况:学校工作 (8)知识层次和能力(教育程度,对电脑.万维网的熟悉程度):博士学位,对电脑熟练掌握,能编程,能力很强. (9)用户的动