[算法导论]#3 循环不变式

在面试某手的时候,完成了一个有序链表的合并,之后面试官又要求用循环不变式来证明算法的正确性……循环不变式?这是啥

后来发现这是算法导论第一章的内容。

不会=算法导论没看

分析过程

必须证明三条性质

  • 初始化:循环的第一次迭代之前,它为真
  • 保持:如果循环的某次迭代之前它为真,那么下次迭代之前它仍为真
  • 终止:在循环终止时,不变式为我们提供了一个有用的性质,该性质有助于证明算法是正确的

前两步有点类似于数学归纳法,而最后一步其实也很重要,因为算法并不是无穷无尽的,必须要终止。例如二分,终止条件非常重要。

以插入排序为例

for(i = 2;i <= n;++i){
    key = a[i];
    j = i - 1;
    while(j > 0 && a[j] > key){
        a[j+1] = a[j];
        j--;
    }
    a[j] = key;
}

在一个有序的数列里插入一个数,插到正确的位置同时比它大的后移,就是这个算法的思想

那就按照循环不变式这个算法的正确性

  • 初始化:很明显在循环之前\((i<2)\)第一个数是单独的,肯定有序
  • 保持:这个算法会将比key大的数都往右移动一个位置,然后将key插入到正确的位置中,这时数组1-i是有序的。
  • 终止:循环结束后,\(i=n+1\)因此保证了1-n是有序的,每个元素都是a中原先的元素,但是拍好序了。因此算法正确。

这个证明不是太数学,而是比较感性的,但也可以说明问题

以二分为例

之前说过,一个二分算法的正确性,终止条件很重要

https://www.cnblogs.com/smallocean/p/11913963.html 这是之前做过二分的笔记

  • 在单调递增序列\(a\)中查找$\geq x $的数中最小的一个
  while(l<r){
      int mid = (l+r)>>1;/*右移运算 相当于除2并且向下取整*/
      if(a[mid]>=x) r=mid;
      else l=mid+1;
  }
  return a[l];
  1. 初始化:待查数组范围是\(l(1)-r(n)\),待查元素key如果存在必定在该范围内
  2. 保持:当符合题意时,范围变成\(l...mid\);当不符合题意时,范围变成\(mid+1...r\);这是对的
  3. 终止:什么时候停止呢?如果\(l=2,r=3\)mid会取\(l\)如果mid满足题意,会导致\(l==r\),这时应该终止,找到答案了。否则,也会导致\(l==r\)。所以终止条件就是\(l\geq r\)的时候
  • 在单调递增序列\(a\)中查找\(\leq x\)的数中最大的一个
  while(l<r){
      int mid = (l+r+1)>>1;
      if(a[mid]<=x) l=mid;
      else r=mid-1;
  }
  return a[l];
  1. 初始化:待查数组范围是\(l(1)-r(n)\),待查元素key如果存在必定在该范围内
  2. 保持:当符合题意时,范围变成\(mid...r\);当不符合题意时,范围变成\(mid+1...r\);这是对的
  3. 终止:如果\(l=2,r=3\)mid会取\(r\),如果mid满足题意,会导致\(l==r\),这时应该终止,找到答案了。否则,也会导致\(l==r\)。所以终止条件就是\(l\geq r\)的时候。如果说依然是(l+r)>>1那么会取到\(l\),如果\(l\)满足,那么将陷入死循环。

有一篇总结很好的文章:https://blog.csdn.net/ltyqljhwcm/article/details/52772002

总结

总的来说循环不变式是一个很好的思想,能帮助我们证明算法的正确性。前两步的类似数学归纳的方法和终止时候的正确性,其实在平时写代码的时候也会不经意间用到类似的方法来想。这次把这种思路书面化,以后也不会再走很多弯路了。

原文地址:https://www.cnblogs.com/smallocean/p/12602356.html

时间: 2024-11-25 07:26:38

[算法导论]#3 循环不变式的相关文章

红黑树&mdash;&mdash;算法导论(15)

1. 什么是红黑树 (1) 简介     上一篇我们介绍了基本动态集合操作时间复杂度均为O(h)的二叉搜索树.但遗憾的是,只有当二叉搜索树高度较低时,这些集合操作才会较快:即当树的高度较高(甚至一种极端情况是树变成了1条链)时,这些集合操作并不比在链表上执行的快.     于是我们需要构建出一种"平衡"的二叉搜索树.     红黑树(red-black tree)正是其中的一种.它可以保证在最坏的情况下,基本集合操作的时间复杂度是O(lgn). (2) 性质     与普通二叉搜索树不

算法导论学习笔记 (页码:9 ~ 16)

前面算法在生活中不谈,算法的重要性不谈,直接说算法. 第2章 算法基础 2.1 插入排序 书中主要介绍了插入排序的思想,即对于数组A[0 ~ N - 1],长度为N.那么,升序的插入排序的过程即是从A[1]开始,先和A[0]比较,如果比A[0]小,那么将A[0]的元素顺序后移放置在A[1]中,将原本A[1]的元素插入在A[0]的位置上,同理再拿A[5]举例,如果比A[4]小,那么A[4]后移,继续比较A[3],如果还是小,A[3]后移,直到找到合适的位置进行插入,原书中提供的伪代码,我这里提供对

堆排序与优先队列&mdash;&mdash;算法导论(7)

1. 预备知识 (1) 基本概念     如图,(二叉)堆一个数组,它可以被看成一个近似的完全二叉树.树中的每一个结点对应数组中的一个元素.除了最底层外,该树是完全充满的,而且从左向右填充.堆的数组A包括两个属性:A.length给出了数组的长度:A.heap-size表示有多少个堆元素保存在该数组中(因为A中可能只有部分位置存放的是堆的有效元素).     由于堆的这种特殊的结构,我们可以很容易根据一个结点的下标i计算出它的父节点.左孩子.右孩子的下标.计算公式如下: parent(i) =

算法导论(Introduction to Algorithms )— 第二章 算法入门 — 2.1 插入排序

一.插入排序:INSERTION-SORT 1.适用范围: which is an efficient algorithm for sorting a small number of elements. 对于少量元素的排序,插入排序是一种高效的算法. 2.原理: Insertion sort works the way many people sort a hand of playing cards. We start with an empty left hand and the cards

快速排序实现代码 算法导论7.1 7.2 7.4

快速排序通常是实际排序中应用最好的选择,因为平均性能很好,且是原址排序,不稳定. 书上的大部分内容在分析其运行时间,感觉看一下就好了(还是蛮喜欢数学的,可是...) #include <iostream> #include <algorithm> #include <random> using namespace std; //实际应用比较多,原址排序 typedef int index; index Partition(int *a, index p, index r

算法导论——lec 06 堆排序

堆数据结构是一种数组对象,它可以被视为一颗完全二叉树,树中每个节点和数组中存放该节点值的那个元 素对应.如果表示堆的数组为A,那么树的根为A[1]. 一. 堆 1. 表示堆的数组A是一个具有两个属性的对象:length(A)是数组中的元素个数,heap-size(A)是存放在A中的堆的 元素个数:A[heap-size(A)]之后的元素都不属于相应的堆.也就是:Heap-size(A)<=length(A). 2. 给定某个节点的下标i,其父节点PARENT(i),左儿子LEFT(i)和右儿子R

算法导论——lec 07 快速排序

一. 快速排序的描述 1. 快速排序是一种原地排序的算法,最坏情况下的时间复杂度为Θ(n^2),期望的运行时间为Θ(n logn),且其中隐含的常数因子较小. 2. 快速排序分三个步骤: 分解:数组A[p...r]被划分成两个数组A[p...q-1]和A[q+1...r],使得A[p...q-1]中的元素都小于等于A[q],A[q+1...r]中的元素都大于等于A[q].下标q在这个划分过程中计算. 解决:递归调用快速排序,对子数组A[p...q-1]和A[q+1...r]进行排序. 合并:两个

算法导论 第2章

本章主要是算法知识的基础讲解,介绍了循环不变式,几个简单的排序算法,递归分治算法等内容. 1.循环不变式 循环不变式主要用来说明算法的正确性,那么什么是循环不变式呢,其实就是在循环过程中,一些元素数据必须保持的一些性质,例如在插入排序中,数组为A,必须保证三个性质: (1) 初始化:在循环开始之前,循环不变式是成立的,即:A[0]是有序的,A[1...n-1]是无序的. (2) 保持:在循环的某一次迭代开始之前,循环不变式是成立的,那么在此次迭代结束后依然应该是成立的,即:A[0...i]是有序

算法导论笔记第6章 堆和堆排序

堆排序结合了插入排序和归并排序的有点:它空间复杂度是O(1), 时间复杂度是O(nlgn). 要讲堆排序,先讲数据结构"堆" 堆: 堆是用数组来存放一个完全二叉树的数据结构.假设数组名是A,树的根节点存放在A[1].它的左孩子存放在A[2],右孩子存放在A[3] 即:对于某个下标位i的节点,它的左孩子是A[2i],  右孩子是A[2i+1].  父节点是A[i/2] PARENT(i) return ?i/2? LEFT(i) return 2i RIGHT(i) return 2i