贝叶斯估计和极大似然估计到底有何区别

预热知识必知
如何求类条件概率密度:
我们知道贝叶斯决策中关键便在于知道后验概率,那么问题便集中在求解类条件概率密度!那么如何求呢?答案便是:将类条件概率密度进行参数化。

最大似然估计和贝叶斯估计参数估计:
鉴于类条件概率密度难求,我们将其进行参数化,这样我们便只需要对参数进行求解就行了,问题难度将大大降低!比如:我们假设类条件概率密度p(x|w)是一个多元正态分布,那么我们就可以把问题从估计完全未知的概率密度p(x|w)转化成估计参数:均值u、协方差ε

所以最大似然估计和贝叶斯估计都属于参数化估计!……当然像KNN估计、Parzen窗这些就是非参数话估计啦!但是参数化估计也自然有它的缺点,下面会说的!

简述二者最大的区别
若用两个字高度概括二者的最大区别那就是:参数

最大似然估计和贝叶斯估计最大区别便在于估计的参数不同,最大似然估计要估计的参数θ被当作是固定形式的一个未知变量,然后我们结合真实数据通过最大化似然函数来求解这个固定形式的未知变量!

贝叶斯估计则是将参数视为是有某种已知先验分布的随机变量,意思便是这个参数他不是一个固定的未知数,而是符合一定先验分布如:随机变量θ符合正态分布等!那么在贝叶斯估计中除了类条件概率密度p(x|w)符合一定的先验分布,参数θ也符合一定的先验分布。我们通过贝叶斯规则将参数的先验分布转化成后验分布进行求解!

同时在贝叶斯模型使用过程中,贝叶斯估计用的是后验概率,而最大似然估计直接使用的是类条件概率密度。

原文链接:https://blog.csdn.net/feilong_csdn/article/details/61633180

原文地址:https://www.cnblogs.com/Ph-one/p/12667073.html

时间: 2024-10-09 01:33:16

贝叶斯估计和极大似然估计到底有何区别的相关文章

极大似然估计、贝叶斯估计、EM算法

参考文献:http://blog.csdn.net/zouxy09/article/details/8537620 极大似然估计 已知样本满足某种概率分布,但是其中具体的参数不清楚,极大似然估计估计就是把待估参数看做是确定性的量,只是其取值未知.最佳估计就是使得产生当前样本的概率最大下的参数值. 贝叶斯估计 已知样本满足某种概率分布,但参数未知.贝叶斯估计把待估参数看成符合某种先验概率分布的随机变量.对样本进行观测的过程就是把先验概率密度转化为后验概率密度,这样就利用样本信息修正了对参数的初始估

机器学习(二十五)— 极大似然估计、贝叶斯估计、最大后验概率估计区别

最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum aposteriori estimation, 简称MAP)是很常用的两种参数估计方法. 1.最大似然估计(MLE) 在已知试验结果(即是样本)的情况下,用来估计满足这些样本分布的参数,把可能性最大的那个参数作为真实的参数估计. 也就是说,最大似然估计,就是利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值(模型已知,参数未知). (1)基本思想 当从模型总体

极大似然估计(Maximum Likelihood)与无监督

1. 极大似然与最大概率 因为不是科班出身,所以最初接触极大似然的时候,总是很奇怪为什么叫极大似然,而不直接叫做最大概率? 后来才知道极大似然是用来估计未知参数的,而最大概率的表述更适合于已知参数的情况下,求解出现最大概率的变量的,举例如下: Max L(θ) = θ1x1+θ2x2+θ3x3 Max P(x) = θ1x1+θ2x2+θ3x3 Max L(θ)是拥有多组观测样本X时,估计θ参数的方法,而Max P(x)正好相反,是已知θ时,求解什么样的x出现会使得P最大. 2.  极大似然与无

极大似然估计与贝叶斯定理

文章转载自:https://blog.csdn.net/zengxiantao1994/article/details/72787849 极大似然估计-形象解释看这篇文章:https://www.zhihu.com/question/24124998 贝叶斯定理-形象解释看这篇文章:https://www.zhihu.com/question/19725590/answer/217025594 极大似然估计 以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然

[白话解析] 深入浅出 极大似然估计 & 极大后验概率估计

[白话解析] 深入浅出极大似然估计 & 极大后验概率估计 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解 极大似然估计 & 极大后验概率估计,并且从名著中找了几个实例给大家看看这两种估计如何应用 & 其非常有趣的特点. 0x01 背景知识 1. 概率 vs 统计 概率(probability)和统计(statistics)看似两个相近的概念,其实研究的问题刚好相反. 1.1 概率 概率研究的是,已经知道了模型和参数后,给出一个事件发生的概率. 概率是一种

极大似然估计(maximum likelihood estimination)教程

极大似然估计法是求点估计的一种方法,最早由高斯提出,后来费歇尔(Fisher)在1912年重新提出.它属于数理统计的范畴. 大学期间我们都学过概率论和数理统计这门课程. 概率论和数理统计是互逆的过程.概率论可以看成是由因推果,数理统计则是由果溯因. 用两个简单的例子来说明它们之间的区别. 由因推果(概率论) 例1:设有一枚骰子,2面标记的是"正",4面标记的是"反".共投掷10次,问:5次"正"面朝上的概率? 解:记 "正面"

极大似然估计和EM算法

title: 最大似然估计和EM算法 date: 2018-06-01 16:17:21 tags: [算法,机器学习] categories: 机器学习 mathjax: true --- 本文是对最大似然估计和EM算法做的一个总结. 一般来说,事件A发生的概率与某个未知参数$\theta?$有关,$\theta?$取值不同,则事件A发生的概率$p(A|\theta)?$也不同.当我们在一次实验中事件A发生了,则认为此时的$\theta?$值应是t的一切可能取值中使$p(A|\theta)?$

极大似然估计思想的最简单解释

极大似然估计思想的最简单解释 https://blog.csdn.net/class_brick/article/details/79724660?from=timeline 极大似然估计法的理解可以从三个角度入手,一个是整体性的思想,然后两个分别是离散状态的极大似然估计和连续状态的极大似然估计的简单例子. 一.思想 极大似然估计可以拆成三个词,分别是"极大"."似然"."估计",分别的意思如下:极大:最大的概率似然:看起来是这个样子的估计:就是

区块链和数据库,技术到底有何区别?

区块链和数据库,技术到底有何区别? 区块链其实是一种数据库,因为他是数字账本,并且在区块的数据结构上存储信息. 关于数据库和区块链,总会有很多的困惑.区块链其实是一种数据库,因为他是数字账本,并且在区块的数据结构上存储信息.数据库中存储信息的结构被称为表格.但是,区块链是数据库,数据库可不是区块链.他们虽然都是存储信息的,但是设计却完全不同,所以不可以互换.而且,这两者存在的目标也不同,所以对于很多人来说,他们不是很清楚为什么区块链是需要的,以及为什么数据库更适合存储某些数据.首先,我们来看看数