luogu P3355 骑士共存问题

本题和方格取数一样,也可以分成黑白点,本题加上特判一个点是否有障碍即可,其余和那题没什么区别,挂一下大佬的证明(二分图最大独立集)

#include<bits/stdc++.h>
using namespace std;
#define lowbit(x) ((x)&(-x))
typedef long long LL;

const int maxm = 1e6+5;
const int INF = 0x3f3f3f3f;
const int dx[] = {-2,-2,-1,-1,1,1,2,2};
const int dy[] = {-1,1,-2,2,2,-2,1,-1};

struct edge{
    int u, v, cap, flow, nex;
} edges[maxm];

int head[maxm], cur[maxm], cnt, level[40005], num[205][205], ID;
bool block[205][205];

void init() {
    memset(head, -1, sizeof(head));
}

void add(int u, int v, int cap) {
    edges[cnt] = edge{u, v, cap, 0, head[u]};
    head[u] = cnt++;
}

void addedge(int u, int v, int cap) {
    add(u, v, cap), add(v, u, 0);
}

void bfs(int s) {
    memset(level, -1, sizeof(level));
    queue<int> q;
    level[s] = 0;
    q.push(s);
    while(!q.empty()) {
        int u = q.front();
        q.pop();
        for(int i = head[u]; i != -1; i = edges[i].nex) {
            edge& now = edges[i];
            if(now.cap > now.flow && level[now.v] < 0) {
                level[now.v] = level[u] + 1;
                q.push(now.v);
            }
        }
    }
}

int dfs(int u, int t, int f) {
    if(u == t) return f;
    for(int& i = cur[u]; i != -1; i = edges[i].nex) {
        edge& now = edges[i];
        if(now.cap > now.flow && level[u] < level[now.v]) {
            int d = dfs(now.v, t, min(f, now.cap - now.flow));
            if(d > 0) {
                now.flow += d;
                edges[i^1].flow -= d;
                return d;
            }

        }
    }
    return 0;
}

int dinic(int s, int t) {
    int maxflow = 0;
    for(;;) {
        bfs(s);
        if(level[t] < 0) break;
        memcpy(cur, head, sizeof(head));
        int f;
        while((f = dfs(s, t, INF)) > 0)
            maxflow += f;
    }
    return maxflow;
}

void run_case() {
    int m, n;
    LL sum = 0;
    init();
    cin >> n >> m;
    int s = 0, t = n*n+1;
    sum += n*n;
    for(int i = 0; i < m; ++i) {
        int x, y; cin >> x >> y;
        block[x][y] = true;
    }
    for(int i = 1; i <= n; ++i) {
        for(int j = 1; j <= n; ++j) {
            num[i][j] = ++ID;
            if((i+j)%2==1) {
                if(!block[i][j]) addedge(s, ID, 1);
            } else {
                if(!block[i][j])addedge(ID, t, 1);
            }
        }
    }
    for(int i = 1; i <= n; ++i)
        for(int j = 1; j <= n; ++j) {
            if((i+j)%2==0) continue;
            for(int k = 0; k < 8; ++k) {
                int nx = i+dx[k], ny = j+dy[k];
                if(nx > n || nx < 1 || ny > n || ny < 1) continue;
                addedge(num[i][j], num[nx][ny], INF);
            }
        }
    sum -= dinic(s, t);
    cout << sum-m;
}

int main() {
    ios::sync_with_stdio(false), cin.tie(0);
    run_case();
    cout.flush();
    return 0;
}

原文地址:https://www.cnblogs.com/GRedComeT/p/12299327.html

时间: 2024-10-09 03:41:14

luogu P3355 骑士共存问题的相关文章

P3355 骑士共存问题 二分建图 + 当前弧优化dinic

P3355 骑士共存问题 题意: 也是一个棋盘,规则是“马”不能相互打到. 思路: 奇偶点分开,二分图建图,这道题要注意每个点可以跑八个方向,两边都可以跑,所以边 = 20 * n * n. 然后dinic 要用当前弧优化. #include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <

P3355 骑士共存问题 网络流

骑士共存 题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑士,使得它们彼此互不攻击 输入输出格式 输入格式: 第一行有 2 个正整数n 和 m (1<=n<=200, 0<=m<n2),分别表示棋盘的大小和障碍数.接下来的 m 行给出障碍的位置.每行 2 个正整数,表示障碍的方格坐标. 输出格式: 将计算出的共存骑士数输出

洛谷 P3355 骑士共存问题

题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑士,使得它们彼此互不攻击 输入输出格式 输入格式: 第一行有 2 个正整数n 和 m (1<=n<=200, 0<=m<n2),分别表示棋盘的大小和障碍数.接下来的 m 行给出障碍的位置.每行 2 个正整数,表示障碍的方格坐标. 输出格式: 将计算出的共存骑士数输出 输入输出样

洛谷 P3355 骑士共存问题【最小割】

同方格取数问题:https://www.cnblogs.com/lokiii/p/8430720.html 记得把障碍点去掉,不连边也不计入sum #include<iostream> #include<cstdio> #include<queue> #include<cstring> using namespace std; const int N=100005,inf=1e9,dx[]={-2,-1,1,2,2,1,-1,-2},dy[]={-1,-2,

P3355 骑士共存问题

二分图最大独立集 先给出二分图最大独立集的概念:选择最多的点,使任何边的两边不被同时选中. 并且有结论:最大独立集=节点总数-最大匹配. 这道题为什么是二分图? 我们可以通过\((x,y)\)中的\(x+y\)的奇偶性来构造二分图,显然它们肯定不会互相攻击. 当一个点\(x+y\)为奇时,向它能攻击到的点都连一条权值为1的边. 这就是这个二分图的建图方法. 但是我不会匈牙利算法,直接网络流套下去就行了. 注意:那些障碍点对我们整个计算根本没有影响,直接忽略它们就可以了.节点总数也不用计算它们.

[COGS746] [网络流24题] 骑士共存

★★☆   输入文件:knight.in   输出文件:knight.out   简单对比 时间限制:1 s   内存限制:128 MB 骑士共存问题 «问题描述: 在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘 上某些方格设置了障碍,骑士不得进入. «编程任务: 对于给定的n*n个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑 士,使得它们彼此互不攻击. «数据输入: 由文件knight.in给出输入数据.第一行有2 个正整数n 和m (1<=n<

AC日记——[网络流24题]骑士共存 cogs 746

746. [网络流24题] 骑士共存 ★★☆   输入文件:knight.in   输出文件:knight.out   简单对比时间限制:1 s   内存限制:128 MB 骑士共存问题 «问题描述: 在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘 上某些方格设置了障碍,骑士不得进入. «编程任务: 对于给定的n*n个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑 士,使得它们彼此互不攻击. «数据输入: 由文件knight.in给出输入数据.第一行

[网络流24题] 骑士共存

746. [网络流24题] 骑士共存 ★★☆   输入文件:knight.in   输出文件:knight.out   简单对比 时间限制:1 s   内存限制:128 MB 骑士共存问题 «问题描述: 在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘 上某些方格设置了障碍,骑士不得进入. «编程任务: 对于给定的n*n个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑 士,使得它们彼此互不攻击. «数据输入: 由文件knight.in给出输入数据.第一

[网络流24题] 骑士共存(cogs 746)

骑士共存问题?问题描述:在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘 上某些方格设置了障碍,骑士不得进入. ?编程任务:对于给定的n*n个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑士,使得它们彼此互不攻击.?数据输入:由文件knight.in给出输入数据.第一行有2 个正整数n 和m (1<=n<=200, 0<=m<=n*n)<n2),< span="">分别表示棋盘的大小和障碍数.接下来的