微博推荐算法学习(Weibo Recommend Algolrithm)

原文:http://hijiangtao.github.io/2014/10/06/WeiboRecommendAlgorithm/

基础及关联算法

作用:为微博推荐挖掘必要的基础资源、解决推荐时的通用技术问题、完成必要的数据分析、为推荐业务提供指导。

  1. 分词技术与核心词提取:是微博内容推荐的基础,用于将微博内容转化为结构化向量,包括词语切分、词语信息标注、内容核心词/实体词提取、语义依存分析等。
  2. 分类与anti-spam:用于微博内容推荐候选的分析,包含微博内容分类和营销广告/色情类微博识别;内容分类采用决策树分类模型实现,共3级分类体系,148个类别;营销广告/色情类微博的识别,采用贝叶斯与最大熵的混合模型。
  3. 聚类技术:主要用于热点话题挖掘,以及为内容相关推荐提供关联资源。属于微博自主研发的聚类技术WVT算法(word vector topic),依据微博内容特点和传播规律设计。
  4. 传播模型与用户影响力分析:开展微博传播模型研究和用户网络影响力分析(包含深度影响力、广度影响力和领域内影响力)。

主要推荐算法

1.Graph-based 推荐算法

从graph的宏观角度看,我们的目标是建立一个具有更高价值的用户关系网络,促进优质信息的快速传播,提升feed流质量;其中的重要工作是关键节点挖掘、面向关键节点的内容推荐、用户推荐。

对这部分的算法做相应的梳理,如下面的表格:

这里的困难点在于graph的“边”怎样量化与取舍,依据多个“边”与“节点”的综合评分计算,以及与网络挖掘分析结果的融合。

这部分的算法研发中,产出了如下的数据附产品:

2.Content-based 推荐算法

Content-based 是微博推荐中最常用也是最基础的推荐算法,它的主要技术环节在于候选集的内容结构化分析和相关性运算。

正文页相关推荐是content-based 应用最广的地方,以它为例,简要的说一下:

其中比较重要的两点:

  • 内容质量分析,主要采用微博曝光收益+内容信息量/可读性的方法来综合计算。微博曝光收益是借助用户群体行为,衡量内容优劣;内容信息量计算比较简单,即是微博关键词的idf信息迭代;对于内容可读性的衡量,我们做了一个小的分类模型,分别以可读性较好的新闻语料和可读性较差的口语化语料为训练样本,通过提取里面的各类词搭配信息,计算新微博具有良好可读性的概率。
  • 词扩展,content-based的效果取决于内容分析的深度。微博的内容比较短,可提取的关键信息比较少,做相关运算时容易因为数据稀疏而导致推荐召回率和准确率的难以权衡;我们引入word2vec技术,优化了词扩展效果,后面又以此为基础开展词聚类的工作,实现了推荐召回率和准确率的同步提升。

相关计算的技术点在于向量的量化和距离度量,微博技术组通常使用“tf*idf权重量化 + 余弦距离”或者“topic 概率 + KLD距离“的两种方法。

3.Model-based 推荐算法

微博面临的两大推荐挑战:来源融合与排序、内容动态分类和语义相关。 由于推荐的候选极大丰富,因此推荐结果呈现两层:多种推荐算法的初选与来源融合排序的精选。这时需要引入机器学习模块,来学习隐藏在用户群体行为背后的规律。

另一方面,UGC的内容生产模式使得人工标注样本不再有效,我们需要很好的聚类模型把近期的全量信息聚合成类,然后建立语义相关,完成推荐。

Model-based 算法就是为了解决上述的问题,下面是新浪微博两块最重要的机器学习工作:

3.1 CTR/RPM(每千次推荐关系达成率)预估模型,采用的基本算法为Logistic regression

下面是CTR预估模型整体的架构图

这部分工作包含样本选择、数据清洗、特征提取与选择、模型训练、在线预估和排序。值得一提的是,模型训练前的数据清洗和噪音剔除非常重要,数据质量是算法效果的上界。

Logisitic regression是一个2分类概率模型,优化的目标在于最大化“样本正确分类概率的连乘值“。

3.2 LFM(Latent Factor Model):LDA、矩阵分解(SVD++、SVD Feature)

混合技术

1.时序混合

在推荐过程的不同时间段,采用不同的推荐算法;以正文页相关推荐为例,在正文页曝光的前期阶段,采用content-based + ctr预估的方法生成推荐结果,待产生的足量可信的用户点击行为后,再采用user-based 协同过滤的方法得到推荐结果。

这样利用content-based很好的解决了冷启动的问题,又充分发挥了user-based CF的作用,实现1+1>2的效果。

2.分层模型混合

很多情况下,一个模型无法很好的得到想要的效果,而分层组合往往会取得比较好的效果,分层模型混合即“将上一层模型的输出作为下层模型的特征值,来综合训练模型,完成推荐任务“。比如我们在做微博首页右侧的ctr预估排序时,采用分层逻辑回归模型,解决了不同产品间特征天然缺失与样本量差异、曝光位置带来的效果偏差等问题。

3.瀑布型混合

这类混合技术思路非常简单,即在推荐候选非常丰富的情况下,采用逐层过滤的方法的得到推荐结果,通常将运算快、区分度低的算法放在前面,完成大量候选集的筛选;将运算慢、区分度高的算法放在后面,精细计算剩下的小规模集合。

4.交叉混合

各类推荐算法中子技术,可以在另外的推荐算法中综合使用,比如content-based在相关性计算中积累的距离计算方法,可以很好的应用在协同过滤的量化计算中。实际的例子,我们将研究LDA时积累的向量计算方法成功的应用到用户推荐中。

Online与Offline

其中三类半成品为:

1)计算过程拆解的离线部分,如user-based CF中的用户相似度,online通过数据库读取后在线计算完成user-based 推荐。

2)离线挖掘的优质候选集,如正文页相关推荐的内容候选集,online通过索引获取到数据后,再通过相关性和ctr预估排序生成推荐结果。

3)具有较高相似度的推荐结果集,如offline计算好粉丝相似高的用户,在线对用户行为做出实时反馈,实时补充推荐与其刚关注用户相似的用户。

效果评测

实际效果的评测分为3个层次:用户满意度、产品层指标(如ctr)、算法层指标,效果评测也会分为人工评测、线上A/B测试、离线算法效果评测3种。

新浪微博算法离线效果评测的架构图:

常用的离线评测指标有:RMSE、召回率、AUC、用户内多样性、用户间多样性、新颖性等。对于不同的产品有不同的组合指标去衡量,比如用户推荐中“用户间多样性”非常重要,而热点话题却可以允许用户间有较大的结果重合度。 文章整理自《微博推荐算法简述

时间: 2024-10-09 20:43:39

微博推荐算法学习(Weibo Recommend Algolrithm)的相关文章

《转》探寻微博背后的大数据原理:微博推荐算法简述

“We are leaving the age of information and entering the age of recommendation” — Chris Anderson in The Long Tail. 我们正在远离信息,而进入推荐时代.——克里斯·安德森 在介绍微博推荐算法之前,我们先聊一聊推荐系统和推荐算法.有这样一些问题:推荐系统适用哪些场景?用来解决什么问题.具有怎样的价值?效果如何衡量? 推荐系统诞生很早,但真正被大家所重视,缘起于以”facebook”为代表的

推荐算法学习笔记

推荐算法举个简单的例子,比如有个用户进来看了一堆内容,我们把他看的所有的历史行为,嵌入到推荐引擎当中去.这个推荐引擎就会生成个性化的频道,下次这个用户再登录,或者都不用下一次,过几分钟之后,他看到的内容就会根据他最近发生的历史行为发生变化,这就是推荐系统的基本逻辑.这种方法叫基于用户行为的推荐,当然是有一定局限性的.比如你只有一个用户行为的时候,你就不知道他会不会看一个从来没人看过的内容,这其实就是长尾问题.当你可以积累越来越多的用户,用户的历史行为会有助于你对长尾内容的理解. 推荐系统本质是在

推荐算法 学习笔记一

“未来 30 年最大的财富会出现在这一领域:内容扩张得越多,就越需要过滤,以便使得注意力聚焦.注意力流到哪里,金钱就跟到哪里.”——摘自某笔记的博文 大学期间因为课题冲突(只要还是人懒欠思考),没有深入地去学习“机器学习”相关知识.近期看到很多关于推荐的博文,也与牛人同学有相关方面的接触,以前的懈怠令我大有悔意.亡羊补牢,犹未晚矣. 不过讲真,抛开主观因素,学点推荐相关的知识,对从事信息技术这个行业真的大有裨益. 言归正传,这篇文章介绍推荐算法(建议直接看英文原文,链接在最后). ## 算法分类

用Spark学习矩阵分解推荐算法

在矩阵分解在协同过滤推荐算法中的应用中,我们对矩阵分解在推荐算法中的应用原理做了总结,这里我们就从实践的角度来用Spark学习矩阵分解推荐算法. 1. Spark推荐算法概述 在Spark MLlib中,推荐算法这块只实现了基于矩阵分解的协同过滤推荐算法.而基于的算法是FunkSVD算法,即将m个用户和n个物品对应的评分矩阵M分解为两个低维的矩阵:$$M_{m \times n}=P_{m \times k}^TQ_{k \times n}$$ 其中k为分解成低维的维数,一般远比m和n小.如果大

Mahout学习系列之推荐算法

参考: 从源代码剖析Mahout推荐引擎 mahout 推荐系统示例 Mahout推荐算法API详解 使用Mahout实现协同过滤 Mahout的taste推荐系统里的几种Recommender分析 前言:Mahout框架集成了大量的常用的机器学习算法,且都支持在Hadoop分布式环境下运行,很大程度上节约了数据处理的时间成本,其中的推荐算法引擎有cf.taste包实现,它提供了一套完整的推荐算法工具库,同时规范了数据结构,并标准了程序开发过程. 1:Mahout推荐算法介绍 2:Taste接口

Mahout in Action 学习---基于物品的分布式推荐算法(Wikipedia数据集)

文字总结自<Mahout in Action>中文版第六章的内容 1.1 数据集介绍 Wikipedia数据集:一篇文章到另外一篇文章的链接. 可以将文章看作是用户,将该文章指向的文章视为该源文章所喜欢的物品. 类型:单向布尔型偏好. 相似性评估算法:LogLikelihoodSimilarity 关于LogLikelihoodSimilarity具体算法思想见: 对数似然比相似度 - xidianycy - 博客频道 - CSDN.NET http://blog.csdn.net/u0143

mahout入门指南之mahout单机版推荐算法

鄙人最近在研究mahout,网上找了一些入门资料来看,发现都整理的比较乱.折腾了一番,终于搞清楚了.为了让新手们较快入门,决定总结分享一下,写此入门指南. mahout是什么? mahout是一个机器学习库,里面实现了一些算法,比如推荐算法,聚类算法. 实现方式有单机内存版,也有分布式(hadoop和spark). mahout如何快速入门? 个人觉得单机版的mahout推荐系统demo比较适合初学者.网上有一些入门资料其实也是单机版的算法,但是那些资料都要配置很多"不必要的"的环境,

[转]Mahout推荐算法API详解

Mahout推荐算法API详解 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等. 从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占

我的算法学习之路

关于 严格来说,本文题目应该是我的数据结构和算法学习之路,但这个写法实在太绕口--况且CS中的算法往往暗指数据结构和算法(例如算法导论指的实际上是数据结构和算法导论),所以我认为本文题目是合理的. 这篇文章讲了什么? 我这些年学习数据结构和算法的总结. 一些不错的算法书籍和教程. 算法的重要性. 初学 第一次接触数据结构是在大二下学期的数据结构课程.然而这门课程并没有让我入门--当时自己正忙于倒卖各种MP3和耳机,对于这些课程根本就不屑一顾--反正最后考试划个重点也能过,于是这门整个计算机专业本