Recall, Precision and F-score

F1 score (also F-score or F-measure) ,调和平均数稍微有点不好理解,最关键的是,不知道分子的情况下,采用调和平均数。

时间: 2024-10-05 05:01:50

Recall, Precision and F-score的相关文章

斯坦福大学公开课机器学习:machine learning system design | trading off precision and recall(F score公式的提出:学习算法中如何平衡(取舍)查准率和召回率的数值)

一般来说,召回率和查准率的关系如下:1.如果需要很高的置信度的话,查准率会很高,相应的召回率很低:2.如果需要避免假阴性的话,召回率会很高,查准率会很低.下图右边显示的是召回率和查准率在一个学习算法中的关系.值得注意的是,没有一个学习算法是能同时保证高查准率和召回率的,要高查准率还是高召回率,取决于自己的需求.此外,查准率和召回率之间的关系曲线可以是多样性,不一定是图示的形状. 如何取舍查准率和召回率数值: 一开始提出来的算法有取查准率和召回率的平均值,如下面的公式average=(P+R)/2

机器学习 F1-Score, recall, precision

在机器学习,模式识别中,我们做分类的时候,会用到一些指标来评判算法的优劣,最常用的就是识别率,简单来说,就是 Acc=Npre/Ntotal 这里的 Npre表示预测对的样本数,Ntotal表示测试集总的样本数. 识别率有的时候过于简单, 不能全面反应算法的性能,除了识别率,还有一些常用的指标,就是我们要介绍的 F1-score, recall, precision. 在介绍这些概念之前,我们先来看一个二分类的问题,给定一组训练集: D={(xi,yi)|xi∈Rn,yi∈{0,1}}Ni=1

机器学习中的 precision、recall、accuracy、F1 Score

1. 四个概念定义:TP.FP.TN.FN 先看四个概念定义: - TP,True Positive - FP,False Positive - TN,True Negative - FN,False Negative 如何理解记忆这四个概念定义呢? 举个简单的二元分类问题 例子: 假设,我们要对某一封邮件做出一个判定,判定这封邮件是垃圾邮件.还是这封邮件不是垃圾邮件? 如果判定是垃圾邮件,那就是做出(Positive)的判定: 如果判定不是垃圾邮件,那就做出(Negative)的判定. Tru

通过Precision/Recall判断分类结果偏差极大时算法的性能

当我们对某些问题进行分类时,真实结果的分布会有明显偏差. 例如对是否患癌症进行分类,testing set 中可能只有0.5%的人患了癌症. 此时如果直接数误分类数的话,那么一个每次都预测人没有癌症的算法也是性能优异的. 此时,我们需要引入一对新的判别标准:Precision/Recall来进行算法的性能评判,它们的定义如下: 可以看出,Precision表示:预测一件事件发生,它实际发生的概率是多少.换言之:预测准的概率如何. Recall表示:一件事情实际发生了,能把它预测出来的概率是多少.

Handling skewed data---trading off precision and recall

preision与recall之间的权衡 依然是cancer prediction的例子,预测为cancer时,y=1;一般来说做为logistic regression我们是当hθ(x)>=0.5时,y=1; 当我们想要在预测cancer更确信时(因给病人说他们有cancer会给他们带来很重大的影响,让他们去治疗,所以想要更确信时再告诉病人cancer的预测): 我们可以将阀值设为0.7,这时我们将有一个高的precision(因为标注出有cancer的都是很确信的),和一个低值的recall

{Reship}Precision, Accuracy & Recall

============================================================== This aritcle came from here ==================================================================== http://blog.sina.com.cn/s/blog_4b59de070100ehl7.html 最近一直在做相关推荐方面的研究与应用工作,召回率与准确率这两个概念偶尔会遇

常用的评价指标:accuracy、precision、recall、f1-score、ROC-AUC、PR-AUC

原文地址:https://www.jianshu.com/p/dbbfffd6a5e9 预测(横)实际(纵) + - + tp fn - fp tn 准确率(Accuracy) \[accuracy=\frac{tp+tn}{tp+fp+tn+fn}\] accuracy是最常见也是最基本的评价指标.但是,在二分类且正负样本不平衡的情况下,尤其是对于较少数样本类感兴趣时,accuracy基本无参考价值.如欺诈检测.癌症检测等,100个样例中,99个负例,1个正例.模型将任意样本都分为负例,acc

最详细的基于R语言的Logistic Regression(Logistic回归)源码,包括拟合优度,Recall,Precision的计算

这篇日志也确实是有感而发,我对R不熟悉,但实验需要,所以简单学了一下.发现无论是网上无数的教程,还是书本上的示例,在讲Logistic Regression的时候就是给一个简单的函数及输出结果说明.从来都没有讲清楚几件事情: 1. 怎样用训练数据训练模型,然后在测试数据上进行验证(测试数据和训练数据可能有重合)? 2. 怎样计算预测的效果,也就是计算Recall,Precision,F-measure等值? 3. 怎样计算Nagelkerke拟合优度等评价指标? 发现这些书本和一些写博客的朋友,

目标检测中的precision,recall,AP,mAP计算详解

交并比IoU衡量的是两个区域的重叠程度,是两个区域重叠部分面积占二者总面积(重叠部分只计算一次)的比例.如下图,两个矩形框的IoU是交叉面积(中间图片红色部分)与合并面积(右图红色部分)面积之比. Iou的定义 在目标检测任务中,如果我们模型输出的矩形框与我们人工标注的矩形框的IoU值大于某个阈值时(通常为0.5)即认为我们的模型输出了正确的 精准率与召回率(Precision & Recall) 大雁与飞机 假设现在有这样一个测试集,测试集中的图片只由大雁和飞机两种图片组成,如下图所示:  假