bzoj1491 社交网络

Description

在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象。不妨看这样的一个问题。

在一个社交圈子里有n个人,人与人之间有不同程度的关系。我们将这个关系网络对应到一个n个结点的无向图上,

两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两个人

之间的关系越密切。我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路

径上的其他结点为s和t的联系提供了某种便利,即这些结点对于s和t之间的联系有一定的重要程度。我们可以通过

统计经过一个结点v的最短路径的数目来衡量该结点在社交网络中的重要程度。考虑到两个结点A和B之间可能会有

多条最短路径。我们修改重要程度的定义如下:令Cs,t表示从s到t的不同的最短路的数目,Cs,t(v)表示经过v从s

到t的最短路的数目;则定义

为结点v在社交网络中的重要程度。为了使I(v)和Cs,t(v)有意义,我们规定需要处理的社交网络都是连通的无向图

,即任意两个结点之间都有一条有限长度的最短路径。现在给出这样一幅描述社交网络的加权无向图,请你求出每

一个结点的重要程度。

Input

输入第一行有两个整数n和m,表示社交网络中结点和无向边的数目。在无向图中,我们将所有结点从1到n进行编号

。接下来m行,每行用三个整数a,b,c描述一条连接结点a和b,权值为c的无向边。注意任意两个结点之间最多有

一条无向边相连,无向图中也不会出现自环(即不存在一条无向边的两个端点是相同的结点)。n≤100;m≤4500

,任意一条边的权值 c 是正整数,满足:1≤c≤1000。所有数据中保证给出的无向图连通,且任意两个结点之间

的最短路径数目不超过 10^10

Output

输出包括n行,每行一个实数,精确到小数点后3位。第i行的实数表示结点i在社交网络中的重要程度。

Sample Input

4 4
1 2 1
2 3 1
3 4 1
4 1 1

Sample Output

1.000
1.000
1.000
1.000

HINT

社交网络如下图所示。

对于 1 号结点而言,只有 2 号到 4 号结点和 4 号到 2 号结点的最短路经过 1 号结点,而 2 号结点和 4 号结

点之间的最短路又有 2 条。因而根据定义,1 号结点的重要程度计算为 1/2 + 1/2 = 1 。由于图的对称性,其他

三个结点的重要程度也都是 1 。

/*
首先考虑任意两个点之间的最短距离,这个距离是不断被更新的,如果两点有边,那么最开始dij = aij,最短路条数为1,用k松弛dij,如果松弛的结果是让他的距离减小,那么根据乘法原理,cij = cik * ckj,同时更新距离;如果松弛结果两者距离不变,那么只更新最短路条数。
再考虑计算每一个点的重要程度,这个根据公式朴素计算即可,注意保留三位小数的问题。
*/
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int inf = 98765432;
int n,m,a[105][105];
double cnts[105][105],ans[105];
int main(){
    cin>>n>>m;
    int u,v,w;
    for(int i = 1;i <= n;i++){
        for(int j = 1;j <= n;j++){
            a[i][j] = inf;
        }
    }
    for(int i = 1;i <= m;i++){
        scanf("%d%d%d",&u,&v,&w);
        a[u][v] = a[v][u] = w;
        cnts[u][v] = cnts[v][u] = 1;
    }
    for(int k = 1;k <= n;k++){
        for(int i = 1;i <= n;i++){
            for(int j = 1;j <= n;j++){
                if(k != i && k != j && i != j){
                    if(a[i][j] > a[i][k] + a[k][j]){
                        a[i][j] = a[i][k] + a[k][j];
                        cnts[i][j] = cnts[i][k] * cnts[k][j];
                    }else if(a[i][j] == a[i][k] + a[k][j]){
                        cnts[i][j] += cnts[i][k] * cnts[k][j];
                    }
                }
            }
        }
    }
    for(int k = 1;k <= n;k++){
        for(int i = 1;i <= n;i++){
            for(int j = 1;j <= n;j++){
                if(k != i&&k != j&&i != j&&cnts[i][j]){
                    if(a[i][j] == a[i][k] + a[k][j]){
                        ans[k] += cnts[i][k] / cnts[i][j] * cnts[k][j];
                    }
                }
            }
        }
    }
    for(int i = 1;i <= n;i++) printf("%.3lf\n",ans[i]);
    return 0;
}
时间: 2024-10-29 19:11:42

bzoj1491 社交网络的相关文章

[NOI2007][BZOJ1491] 社交网络

1491: [NOI2007]社交网络 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1086  Solved: 629[Submit][Status][Discuss] Description Input Output 输出文件包括n 行,每行一个实数,精确到小数点后3 位.第i 行的实数表 示结点i 在社交网络中的重要程度. Sample Input 4 4 1 2 1 2 3 1 3 4 1 4 1 1 Sample Output 1.000

BZOJ1491|社交网络|Floyd

Description Input Output输出文件包括n 行,每行一个实数,精确到小数点后3 位.第i 行的实数表 示结点i 在社交网络中的重要程度.Sample Input4 41 2 12 3 13 4 14 1 1Sample Output1.0001.0001.0001.000HINT 为1分析:一看范围就笑了,Floyd不解释. #include<iostream> #include<cstdio> #include<cstdlib> using nam

BZOJ1491:1491: [NOI2007]社交网络

1491: [NOI2007]社交网络 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2204  Solved: 1175[Submit][Status][Discuss] Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子里有n个人,人与人之间有不同程度的关系.我们将这个关系网络对应到一个n个结点的无向图上, 两个不同的人若互相认识,则在他们对应

bzoj1491 [NOI2007]社交网络

Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有n个人,人与人之间有不同程度的关系.我们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两个人之间的关系越密切.我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路径上的其他结点为s和t的联系提供了某种便利,即这些结点对于

BZOJ1491 NOI2007 社交网络 最短路

题意:求每个节点v的$\sum\limits_{s \ne v,t \ne v} {\frac{{{C_{s,t}}(v)}}{{{C_{s,t}}}}}$,其中${C_{s,t}}(v)$为从s到t经过v的最短路的数量,${C_{s,t}}$为s到t的最短路的总数 题解:跑一边Floyd然后枚举判断即可 #include <cstdio> #include <climits> #include <cstring> #include <cstdlib> #i

【Floyd】BZOJ1491: [NOI2007]社交网络

Description Solution n<=100自然联想Floyd 设两个数组d[n][n]存最短距离,t[n][n]存最短路径条数 更新d的时候顺便更新t,乘法原理 1 if(d[i][j]>d[i][k]+d[k][j]){ 2 d[i][j]=d[i][k]+d[k][j]; 3 t[i][j]=t[i][k]*t[k][j]; 4 } 5 else if(d[i][j]==d[i][k]+d[k][j]) 6 t[i][j]+=t[i][k]*t[k][j]; 再统计答案 1 i

luogu P2047 社交网络

P2047 社交网络 2017-09-17 题目描述 在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有n个人,人与人之间有不同程度的关系.我 们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两 个人之间的关系越密切. 我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路径上的其他结点为s和

bzoj 1491: [NOI2007]社交网络

Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子里有n个人,人与人之间有不同程度的关系.我们将这个关系网络对应到一个n个结点的无向图上, 两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两个人 之间的关系越密切.我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路 径上的其他结点为s和t的联系提供了某种便利,即这些

社会友谊和人群移动:基于位置的社交网络中的用户移动(一)

原文标题:Friendship and Mobility: User Movement In Location-Based Social Networks 作者单位:斯坦福大学    发表日期:2011年 会议:第十七届 ACM SIGKDD 国际会议--知识发现和数据挖掘 引用:Cho E, Myers S A, Leskovec J. Friendship and mobility: user movement in location-based social networks[C]// P