CPU与内存互联的架构演变

随着计算机中CPU核数目的增加,传统的UMA(unifonn memory access)架构由于对关键硬件(如中央内存控制器)的竞争加剧出现了性能上的瓶颈,即扩展性不强。而NUMA架构则以其良好的可扩展性,逐渐成为多核系统的主流架构。本节主要介绍一下目前三大主流的架构体系。

在传统的PC机上我们的CPU和内存是这样互联的:

CPU和内存之间的交互,中间通过北桥芯片进行转发和交互,如图,途中显示了一个CPU的情况下和内存的连接架构图。

在最初的时候,我们的电脑都单颗CPU的,随着我们工艺的进步和我们应用的越来越复杂,我们发现单颗CPU以及无法承载我们的计算能力,那么解决的办法就是多来几颗CPU,只要在我们的电脑主板上多加几个CPU插槽,就可以增加CPU的数量,当然这样加CPU不能随便在主板上找个空地插上吧,计算机底层全部都是基础电路,所以对于他的体系结构设计就显得很重要,所以在进过一众高手的理论和实践之后,出来了一种如下所示的架构:

如图,我们这里显示了4颗CPU,每个CPU 4核心,组成一个多处理结构。当然这里面还有很多的技术细节,但是在这里我没法一一呈现。我们知道,在CPU当中,每个CPU有几个核心,就表明同一时刻可以有多少个进程可以运行。如图,如果一颗CPU的核心数是4核心的话,那么他就支持在同一时刻同时运行4个进程,开启了超线程技术之后,就可以同时运行8个进程。所以在上图中,我们的计算能力就是4x4=16,如果开启超线程就是4x4x2=32。

SMP架构

在上图中间,CPU的处理能力增加了,内存的存储容量提升了,但是这个时候瓶颈就出现在了北桥芯片上,于是那掉中间的北桥芯片,让CPU直接和内存进行交互。如下图:

这就是SMP架构,SMP(Symmetric Multi-Processing),对称多处理结构的简称,是指在一个计算机上汇集了一组处理器(多CPU),各CPU之间共享内存子系统以及总线结构。在这种技术的支持下,一个服务器系统可以同时运行多个处理器,并共享内存和其他的主机资源。以上这段介绍摘自百度百科。

SMP模式将多个处理器与一个集中的存储器相连。在SMP模式下,所有处理器都可以访问同一个系统物理存储器,这就意味着SMP系统只运行操作系统的一个拷贝。因此SMP系统有时也被称为一致存储器访问(UMA)结构体系,一致性意指无论在什么时候,处理器只能为内存的每个数据保持或共享唯一一个数值。很显然,SMP的缺点是可伸缩性有限,因为在存储器接口达到饱和的时候,增加处理器并不能获得更高的性能。SMP系统有时也被称为一致存储器访问(UMA)结构体系。

MPP架构

由于SMP的缺点,人们开发出了另一种架构来试图避免这种缺点,这种架构就是MPP架构,其结构如下图所示:

MPP是一种分布式存储器模式,能够将更多的处理器纳入一个系统的存储器。一个分布式存储器模式具有多个节点,每个节点都有自己的存储器,可以配置为SMP模式,也可以配置为非SMP模式。单个的节点相互连接起来就形成了一个总系统。MPP体系结构对硬件开发商颇具吸引力,因为它们出现的问题比较容易解决,开发成本比较低。由于没有硬件支持共享内存或高速缓存一致性的问题,所以比较容易实现大量处理器的连接。

NUMA架构

但是这种MPP架构每个处理器只能访问他自己的本地的存储,而不能访问别是处理器的存储,这就可能造成可能这个处理器需要的存储资源比较多时,没法远程调用其他处理器的存储资源,而且也可能另一个处理器的存储资源总是处于闲置状态,为了解决这个问题,开发了另一种架构,即NUMA架构,如下图:

非统一内存访问(NUMA)是一种用于多处理器的电脑记忆体设计,内存访问时间取决于处理器的内存位置。在NUMA下,处理器访问它自己的本地存储器的速度比非本地存储器(存储器的地方到另一个处理器之间共享的处理器或存储器)快一些。

NUMA架构在逻辑上遵循对称多处理(SMP)架构。 它是在二十世纪九十年代被开发出来的,开发商包括Burruphs (优利系统), Convex Computer(惠普),意大利霍尼韦尔信息系统(HISI)的(后来的Group Bull),Silicon Graphics公司(后来的硅谷图形),Sequent电脑系统(后来的IBM),通用数据(EMC), Digital (后来的Compaq,HP)。 这些公司研发的技术后来在类Unix操作系统中大放异彩,并在一定程度上运用到了Windows NT中。

NUMA通过提供分离的存储器给各个处理器,避免当多个处理器访问同一个存储器产生的性能损失来试图解决这个问题。对于涉及到分散的数据的应用(在服务器和类似于服务器的应用中很常见),NUMA可以通过一个共享的存储器提高性能至n倍,而n大约是处理器(或者分离的存储器)的个数。

NUMA既保持了SMP模式单一操作系统拷贝、简便的应用程序编程模式以及易于管理的特点,又继承了MPP模式的可扩充性,可以有效地扩充系统的规模。这也正是NUMA的优势所在。

时间: 2024-12-31 03:29:41

CPU与内存互联的架构演变的相关文章

从100PV到1亿级PV网站架构演变

如果你对项目管理.系统架构有兴趣,请加微信订阅号"softjg",加入这个PM.架构师的大家庭 一个网站就像一个人,存在一个从小到大的过程.养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则.本文结合我自已14年网站人的经历记录一些架构演变中的体会. 1:积累是必不可少的 架构师不是一天练成的. 1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HT

[转]大型网站架构的优化与架构演变(整理)

=============大型网站架构的优化===================== 一个小型的网站,比如个人 网站,可以使用最简单的html静态页面就实现了,配合一些图片达到美化效果,所有的页面均存放在一个目录下,这样的网站对系统架构.性能的要求都很简 单,随着互联网业务的不断丰富,网站相关的技术经过这些年的发展,已经细分到很细的方方面面,尤其对于大型网站来说,所采用的技术更是涉及面非常广,从硬 件到软件.编程语言.数据库.WebServer.防火墙等各个领域都有了很高的要求,已经不是原来简

大型网站架构演变和知识体系

之前也有一些介绍大型网站架构演变的文章,例如LiveJournal的.ebay的,都是非常值得参考的,不过感觉他们讲的更多的是每次演变的结果,而没有很详细的讲为什么需要做这样的演变,再加上近来感觉有不少同学都很难明白为什么一个网站需要那么复杂的技术,于是有了写这篇文章的想法,在这篇文章中将阐述一个普通的网站发展成大型网站过程中的一种较为典型的架构演变历程和所需掌握的知识体系,希望能给想从事互联网行业的同学一点初步的概念,文中的不对之处也请各位多给点建议,让本文真正起到抛砖引玉的效果. 架构演变第

从100PV到1亿级PV站点架构演变

假设你对项目管理.系统架构有兴趣,请加微信订阅号"softjg".增加这个PM.架构师的大家庭 一个站点就像一个人,存在一个从小到大的过程. 养一个站点和养一个人一样.不同一时候期须要不同的方法,不同的方法下有共同的原则. 本文结合我自已14年站点人的经历记录一些架构演变中的体会. 1:积累是不可缺少的 架构师不是一天练成的. 1999年,我作了一个个人主页,在学校内的虚拟空间,參加了一次主页大赛,几个DREAMWEAVER的页面.几个TABLE作布局,一个DB连接,几行PHP的代码嵌

直播平台的数据库架构演变

8月24日,阿里云数据库技术峰会到来,本次技术峰会邀请到了阿里集团和阿里云数据库老司机们,为大家分享了一线数据库实践经验和技术干货.在本次峰会上,特邀嘉宾映客直播架构师王振涛分享了映客直播作为创业公司从0至日活千万的数据库架构变迁,数据库在直播中的经典应用场景,数据库存储的优化思路,以及如何构建一个高可用数据库架构. 以下内容根据演讲嘉宾现场视频以及PPT整理而成. 本次分享的内容将主要围绕以下四个部分: 一.映客直播发展历程 二.直播遇上云数据库 三.风口上的数据库架构变迁 四.直播典型应用场

【转】大型网站架构演变和知识体系

大型网站架构演变和知识体系 之前也有一些介绍大型网站架构演变的文章,例如LiveJournal的.ebay的,都是非常值得参考的,不过感觉他们讲的更多的是每次演变的结果,而没有很详细的讲为什么需要做这样的演变,再加上近来感觉有不少同学都很难明白为什么一个网站需要那么复杂的技术,于是有了写这篇文章的想法,在这篇文章中 将阐述一个普通的网站发展成大型网站过程中的一种较为典型的架构演变历程和所需掌握的知识体系,希望能给想从事互联网行业的同学一点初步的概念,:),文中的不对之处也请各位多给点建议,让本文

大型网站架构演变史(含技术栈与价值观)

这篇文章是参考李智慧的<大型网站技术架构:核心原理与案例分析>和现蘑菇街CTO曽宪杰的<大型网站系统与Java中间件实践>写的一篇读书笔记. 前言 何谓大型网站?大型网站的特点是什么?大型网站架构发生演变的源动力是什么?大型网站的架构演变经历了哪些阶段?在演变的某个具体阶段使用到常用技术有哪些,为什么要使用这些技术,同时这些技术又解决了什么问题?笔者在初次接触大型网站时思考了以上几个问题,本着缘木求鱼的方式,我打算详细的扒一扒大型网站的演变史.如果对以上的几个问题都理解透彻了,那么

CPU的快速互联通道(QPI)详解

翻译自:http://www.hardwaresecrets.com/article/Everything-You-Need-to-Know-About-The-QuickPath-Interconnect-QPI/610/1 自Intel有CPU开始,便一直采用的是称之为"前端总线(Front Side Bus, FSB)"的外部总线.前端总线是由内存和I/O共享的一条通往CPU的通道.新一代的Intel 处理器将内置内存控制器,所以该处理器将提供两个通道:连接CPU和内存的内存总线

【转】CPU的快速互联通道(QPI)详解

原文自:http://blog.csdn.net/hipercomer/article/details/27580323 翻译自:http://www.hardwaresecrets.com/article/Everything-You-Need-to-Know-About-The-QuickPath-Interconnect-QPI/610/1 自Intel有CPU开始,便一直采用的是称之为"前端总线(Front Side Bus, FSB)"的外部总线.前端总线是由内存和I/O共享