描述
Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled with different qualities beans. Meantime, there is only one bean in any 1*1 grid. Now you want to eat the beans and collect the qualities, but everyone must obey by the following
rules: if you eat the bean at the coordinate(x, y), you can’t eat the beans anyway at the coordinates listed (if exiting): (x, y-1), (x, y+1), and the both rows whose abscissas are x-1 and x+1.
Now, how much qualities can you eat and then get ?
输入
There are a few cases. In each case, there are two integer M (row number) and N (column number). The next M lines each contain N integers, representing the qualities of the beans. We can make sure that the quality of bean isn‘t beyond 1000, and 1<=M,N<=500.
输出
For each case, you just output the MAX qualities you can eat and then get.
样例输入
4 6
11 0 7 5 13 9
78 4 81 6 22 4
1 40 9 34 16 10
11 22 0 33 39 6
样例输出
242
如果是一行的话,就是说当n==1时,dp[i]表示从开始到第i个数所能取得的最大和,则有dp[i]=max(dp[i-1], dp[i-2]+a[i]);这是每一行的情况,算出每一行的所能得到的最大和,接下来再竖着来,相邻的行不能取,就能用同样的方法求出整个矩阵的最大和,总体思路就是先算每一行再将二维化成一维。
AC代码:
# include <cstdio> # include <cstring> # include <algorithm> using namespace std; int a[510][510], dp_y[510][510], ans[510]; int main(){ int n, m, i, j, k; while(scanf("%d%d", &n, &m)!=EOF){ memset(a, 0, sizeof(a)); for(i=1; i<=n; i++){ for(j=1; j<=m; j++){ scanf("%d", &a[i][j]); } } memset(dp_y, 0, sizeof(dp_y)); for(i=1; i<=n; i++){ dp_y[i][1]=a[i][1]; for(j=2; j<=m; j++){ dp_y[i][j]=max(dp_y[i][j-1], dp_y[i][j-2]+a[i][j]); } } memset(ans, 0, sizeof(ans)); ans[1]=dp_y[1][m]; for(i=2; i<=n; i++){ ans[i]=max(ans[i-1], ans[i-2]+dp_y[i][m]); } printf("%d\n", ans[n]); } return 0; }