机器学习六--K-means聚类算法

想想常见的分类算法有决策树、Logistic回归、SVM、贝叶斯等。分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非常大,想想如果给你50个G这么大的文本,里面已经分好词,这时需要将其按照给定的几十个关键字进行划分归类,监督学习的方法确实有点困难,而且也不划算,前期工作做得太多了。

这时候可以考虑使用聚类算法,我们只需要知道这几十个关键字是什么就可以了。聚类属于无监督学习,相比于分类,聚类不依赖预定义的类和类标号的训练实例。本文首先介绍聚类的基础——距离与相异度,然后介绍一种常见的聚类算法——K-means聚类。

在正式讨论聚类前,我们要先弄清楚一个问题:如何定量计算两个可比较元素间的相异度。前面的这些知识弄懂了,加上K-means的定义,基本上就可以大概理解K-means的算法了,不算一个特别难的算法。用通俗的话说,相异度就是两个东西差别有多大,例如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能我们直观感受到的。但是,计算机没有这种直观感受能力,我们必须对相异度在数学上进行定量定义。

设X={x1,x2,x3,,,,xn},Y={y1,y2,y3,,,,yn} ,其中X,Y是两个元素项,各自具有n个可度量特征属性,那么X和Y的相异度定义为:d=(X,Y)=f(X,Y)->R,其中R为实数域。也就是说相异度是两个元素对实数域的一个映射,所映射的实数定量表示两个元素的相异度。

下面介绍不同类型变量相异度计算方法。

标量

标量也就是无方向意义的数字,也叫标度变量。现在先考虑元素的所有特征属性都是标量的情况。例如,计算X={2,1,102}和Y={1,3,2}的相异度。一种很自然的想法是用两者的欧几里得距离来作为相异度,欧几里得距离的定义如下:

其意义就是两个元素在欧氏空间中的集合距离,因为其直观易懂且可解释性强,被广泛用于标识两个标量元素的相异度。将上面两个示例数据代入公式,可得两者的欧氏距离为:

除欧氏距离外,常用作度量标量相异度的还有曼哈顿距离和闵可夫斯基距离,两者定义如下:

曼哈顿距离:

闵可夫斯基距离:

欧氏距离和曼哈顿距离可以看做是闵可夫斯基距离在p=2和p=1下的特例。

0-1规格化

下面要说一下标量的规格化问题。上面这样计算相异度的方式有一点问题,就是取值范围大的属性对距离的影响高于取值范围小的属性。例如上述例子中第三个属性的取值跨度远大于前两个,这样不利于真实反映真实的相异度,为了解决这个问题,一般要对属性值进行规格化。所谓规格化就是将各个属性值按比例映射到相同的取值区间,这样是为了平衡各个属性对距离的影响。通常将各个属性均映射到[0,1]区间,映射公式为:

其中max(ai)和min(ai)表示所有元素项中第i个属性的最大值和最小值。例如,将示例中的元素规格化到[0,1]区间后,就变成了X’={1,0,1},Y’={0,1,0},重新计算欧氏距离约为1.732。

二元变量

所谓二元变量是只能取0和1两种值变量,有点类似布尔值,通常用来标识是或不是这种二值属性。对于二元变量,上一节提到的距离不能很好标识其相异度,我们需要一种更适合的标识。一种常用的方法是用元素相同序位同值属性的比例来标识其相异度。

设有X={1,0,0,0,1,0,1,1},Y={0,0,0,1,1,1,1,1},可以看到,两个元素第2、3、5、7和8个属性取值相同,而第1、4和6个取值不同,那么相异度可以标识为3/8=0.375。一般的,对于二元变量,相异度可用“取值不同的同位属性数/单个元素的属性位数”标识。

上面所说的相异度应该叫做对称二元相异度。现实中还有一种情况,就是我们只关心两者都取1的情况,而认为两者都取0的属性并不意味着两者更相似。例如在根据病情对病人聚类时,如果两个人都患有肺癌,我们认为两个人增强了相似度,但如果两个人都没患肺癌,并不觉得这加强了两人的相似性,在这种情况下,改用“取值不同的同位属性数/(单个元素的属性位数-同取0的位数)”来标识相异度,这叫做非对称二元相异度。如果用1减去非对称二元相异度,则得到非对称二元相似度,也叫Jaccard系数,是一个非常重要的概念。

分类变量

分类变量是二元变量的推广,类似于程序中的枚举变量,但各个值没有数字或序数意义,如颜色、民族等等,对于分类变量,用“取值不同的同位属性数/单个元素的全部属性数”来标识其相异度。

序数变量

序数变量是具有序数意义的分类变量,通常可以按照一定顺序意义排列,如冠军、亚军和季军。对于序数变量,一般为每个值分配一个数,叫做这个值的秩,然后以秩代替原值当做标量属性计算相异度。

向量

对于向量,由于它不仅有大小而且有方向,所以闵可夫斯基距离不是度量其相异度的好办法,一种流行的做法是用两个向量的余弦度量,这个应该大家都知道吧,其度量公式为:

其中||X||表示X的欧几里得范数。要注意,余弦度量度量的不是两者的相异度,而是相似度!

什么是聚类?

所谓聚类问题,就是给定一个元素集合D,其中每个元素具有n个可观察属性,使用某种算法将D划分成k个子集,要求每个子集内部的元素之间相异度尽可能低,而不同子集的元素相异度尽可能高。其中每个子集叫做一个

与分类不同,分类是示例式学习,要求分类前明确各个类别,并断言每个元素映射到一个类别,而聚类是观察式学习,在聚类前可以不知道类别甚至不给定类别数量,是无监督学习的一种。目前聚类广泛应用于统计学、生物学、数据库技术和市场营销等领域,相应的算法也非常的多。本文仅介绍一种最简单的聚类算法——k均值(k-means)算法

k均值算法的计算过程非常直观:

1、从D中随机取k个元素,作为k个簇的各自的中心。

2、分别计算剩下的元素到k个簇中心的相异度,将这些元素分别划归到相异度最低的簇。

3、根据聚类结果,重新计算k个簇各自的中心,计算方法是取簇中所有元素各自维度的算术平均数。

4、将D中全部元素按照新的中心重新聚类。

5、重复第4步,直到聚类结果不再变化。

6、将结果输出。

时间复杂度:O(T*n*k*m)

空间复杂度:O(n*m)

n:元素个数,k:第一步中选取的元素个数,m:每个元素的特征项个数,T:第5步中迭代的次数

参考:

T2噬菌体(很多理解都是借鉴这位大牛的,还在阅读学习TA的其他博文)

K-means聚类--百度百科

总结

接下来的目标就是Logistic回归、SVM。之前看过很多遍有关这两个算法的博客,但是理解还是不够深入,继续学习,希望有所收获。

时间: 2024-11-05 16:38:15

机器学习六--K-means聚类算法的相关文章

机器学习实战笔记-利用K均值聚类算法对未标注数据分组

聚类是一种无监督的学习,它将相似的对象归到同一个簇中.它有点像全自动分类.聚类方法几乎可以应用于所有对象,簇内的对象越相似,聚类的效果越好 簇识别给出聚类结果的含义.假定有一些数据,现在将相似数据归到一起,簇识别会告诉我们这些簇到底都是些什么.聚类与分类的最大不同在于,分类的目标事先巳知,而聚类则不一样.因为其产生的结果与分类相同,而只是类别没有预先定义,聚类有时也被称为无监督分类(unsupervised classification ). 聚类分析试图将相似对象归人同一簇,将不相似对象归到不

k-均值聚类算法;二分k均值聚类算法

根据<机器学习实战>一书第十章学习k均值聚类算法和二分k均值聚类算法,自己把代码边敲边理解了一下,修正了一些原书中代码的细微差错.目前代码有时会出现如下4种报错信息,这有待继续探究和完善. 报错信息: Warning (from warnings module): File "F:\Python2.7.6\lib\site-packages\numpy\core\_methods.py", line 55 warnings.warn("Mean of empty

K均值聚类算法

k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,其步骤是随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心.聚类中心以及分配给它们的对象就代表一个聚类.每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算.这个过程将不断重复直到满足某个终止条件.终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小.

机器学习:Python实现聚类算法(三)之总结

考虑到学习知识的顺序及效率问题,所以后续的几种聚类方法不再详细讲解原理,也不再写python实现的源代码,只介绍下算法的基本思路,使大家对每种算法有个直观的印象,从而可以更好的理解函数中参数的意义及作用,而重点是放在如何使用及使用的场景. (题外话: 今天看到一篇博文:刚接触机器学习这一个月我都做了什么?  里面对机器学习阶段的划分很不错,就目前而言我们只要做到前两阶段即可) 因为前两篇博客已经介绍了两种算法,所以这里的算法编号从3开始. 3.Mean-shift 1)概述 Mean-shift

基于改进人工蜂群算法的K均值聚类算法(附MATLAB版源代码)

其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登后,陆陆续续收到本科生.研究生还有博士生的来信和短信微信等,表示了对论文的兴趣以及寻求算法的效果和实现细节,所以,我也就通过邮件或者短信微信来回信,但是有时候也会忘记回复. 另外一个原因也是时间久了,我对于论文以及改进的算法的记忆也越来越模糊,或者那天无意间把代码遗失在哪个角落,真的很难想象我还会全

机器学习——利用K-均值聚类算法对未标注数据分组

聚类是一种无监督的学习,它将相似的对象归到同一簇中.它有点像全自动分类.聚类方法几乎可以应用到所有对象,簇内的对象越相似,聚类的效果越好. K-均值(K-means)聚类算法,之所以称之为K-均值是因为它可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算而成. 簇识别(cluster identification)给出簇类结果的含义.假定有一些数据,现在将相似数据归到一起,簇识别会告诉我们这些簇到底都是些什么. K-均值聚类算法 优点:容易实现 缺点:可能收敛到局部最小值,在大规模数据

K均值聚类算法的MATLAB实现

1.K-均值聚类法的概述 之前在参加数学建模的过程中用到过这种聚类方法,但是当时只是简单知道了在matlab中如何调用工具箱进行聚类,并不是特别清楚它的原理.最近因为在学模式识别,又重新接触了这种聚类算法,所以便仔细地研究了一下它的原理.弄懂了之后就自己手工用matlab编程实现了,最后的结果还不错,嘿嘿~~~ 简单来说,K-均值聚类就是在给定了一组样本(x1, x2, ...xn) (xi, i = 1, 2, ... n均是向量) 之后,假设要将其聚为 m(<n) 类,可以按照如下的步骤实现

k means聚类过程

k-means是一种非监督 (从下图0 当中我们可以看到训练数据并没有标签标注类别)的聚类算法 0.initial 1.select centroids randomly 2.assign points 3.update centroids 4.reassign points 5.update centroids 6.reassign points 7.iteration reference: https://www.naftaliharris.com/blog/visualizing-k-me

机器学习经典算法详解及Python实现--聚类及K均值、二分K-均值聚类算法

摘要 聚类是一种无监督的学习(无监督学习不依赖预先定义的类或带类标记的训练实例),它将相似的对象归到同一个簇中,它是观察式学习,而非示例式的学习,有点像全自动分类.说白了,聚类(clustering)是完全可以按字面意思来理解的--将相同.相似.相近.相关的对象实例聚成一类的过程.机器学习中常见的聚类算法包括 k-Means算法.期望最大化算法(Expectation Maximization,EM,参考"EM算法原理").谱聚类算法(参考机器学习算法复习-谱聚类)以及人工神经网络算法

《机器学习实战》之K-均值聚类算法的python实现

<机器学习实战>之K-均值聚类算法的python实现 最近的项目是关于"基于数据挖掘的电路故障分析",项目基本上都是师兄们在做,我只是在研究关于项目中用到的如下几种算法:二分均值聚类.最近邻分类.基于规则的分类器以及支持向量机.基于项目的保密性(其实也没有什么保密的,但是怕以后老板看到我写的这篇博文,所以,你懂的),这里就不介绍"基于数据挖掘的电路故障分析"的思路了. 废话不多说了,开始正题哈. 基本K-均值聚类算法 基本K均值算法的基本思路为:首先选择