【BZOJ 1188】 [HNOI2007]分裂游戏

Description

聪聪和睿睿最近迷上了一款叫做分裂的游戏。 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择 3 个瓶子。标号为 i,j,k, 并要保证 i < j , j < = k 且第 i 个瓶子中至少要有 1 颗巧克力豆,随后这个人从第 i 个瓶子中拿走一颗豆 子并在 j,k 中各放入一粒豆子(j 可能等于 k) 。如果轮到某人而他无法按规则取豆子,那么他将输 掉比赛。胜利者可以拿走所有的巧克力豆! 两人最后决定由聪聪先取豆子,为了能够得到最终的巧克力豆,聪聪自然希望赢得比赛。他思考 了一下,发现在有的情况下,先拿的人一定有办法取胜,但是他不知道对于其他情况是否有必胜 策略,更不知道第一步该如何取。他决定偷偷请教聪明的你,希望你能告诉他,在给定每个瓶子 中的最初豆子数后是否能让自己得到所有巧克力豆,他还希望你告诉他第一步该如何取,并且为 了必胜,第一步有多少种取法? 假定 1 < n < = 21,p[i] < = 10000

Input

输入文件第一行是一个整数t表示测试数据的组数,接下来为t组测试数据(t<=10)。每组测试数据的第一行是瓶子的个数n,接下来的一行有n个由空格隔开的非负整数,表示每个瓶子中的豆子数。

Output

对于每组测试数据,输出包括两行,第一行为用一个空格两两隔开的三个整数,表示要想赢得游戏,第一步应该选取的3个瓶子的编号i,j,k,如果有多组符合要求的解,那么输出字典序最小的一组。如果无论如何都无法赢得游戏,那么输出用一个空格两两隔开的三个-1。第二行表示要想确保赢得比赛,第一步有多少种不同的取法。

Sample Input

2
4
1 0 1 5000
3
0 0 1

Sample Output

0 2 3
1
-1 -1 -1
0

nim游戏&&博弈论

感觉这个题之后我对博弈的理解更加深入了。。。

定义每一个位置的巧克力豆为一个状态,总状态就是由每一个分状态(就是每一位置豆子)^而来

每一个位置的豆子的状态由其全部的后继状态抑或而来。。。显然得当找到最后位置的豆子时为先手必败状态(因为此时已经不可能有j,k来提供选择),返回0

方案就暴力枚举

如果总状态^三个分状态为0就说明如此移动能到达下一步的先手必败状态即此时的后手必败状态。。。统计方案数就ok了

 1 #include<cstdio>
 2 #include<cstring>
 3 using namespace std;
 4 int sg[30],a[30],n,tot,T,ans;
 5 int get_sg(int x){
 6     if(x==n) return 0;
 7     if(sg[x]!=-1) return sg[x];
 8     bool mark[30000];
 9     memset(mark,0,sizeof(mark));
10     for(int i=x+1;i<=n;i++)
11         for(int j=i;j<=n;j++)
12             mark[get_sg(i)^get_sg(j)]=1;
13     for(int i=0;;i++) if(!mark[i]) {
14         sg[x]=i; return sg[x];
15     }
16 }
17
18 int main(){
19     scanf("%d",&T);
20     while(T--){
21         scanf("%d",&n);
22         memset(sg,-1,sizeof(sg));
23         tot=ans=0;
24         for(int i=1;i<=n;i++){
25             scanf("%d",&a[i]);
26             if(a[i]&1) ans^=get_sg(i);
27         }
28         for(int i=1;i<=n;i++)
29             for(int j=i+1;j<=n;j++)
30                 for(int k=j;k<=n;k++){
31                     if((ans^get_sg(i)^get_sg(j)^get_sg(k))!=0) continue;
32                     ++tot;
33                     if(tot==1) printf("%d %d %d\n",i-1,j-1,k-1);
34                 }
35         if(!tot) printf("-1 -1 -1\n");
36         printf("%d\n",tot);
37     }
38 }
时间: 2024-12-18 22:19:09

【BZOJ 1188】 [HNOI2007]分裂游戏的相关文章

bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)

1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 733  Solved: 451[Submit][Status][Discuss] Description 聪 聪和睿睿最近迷上了一款叫做分裂的游戏. 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择 3 个瓶子.标号为 i,j,k, 并要保证 i < j ,

[BZOJ 1188] [HNOI2007] 分裂游戏 【博弈论|SG函数】

题目链接:BZOJ - 1188 题目分析 我们把每一颗石子看做一个单个的游戏,它的 SG 值取决于它的位置. 对于一颗在 i 位置的石子,根据游戏规则,它的后继状态就是枚举符合条件的 j, k.然后后继状态就是 j 与 k 这两个游戏的和. 游戏的和的 SG 值就是几个单一游戏的 SG 值的异或和. 那么还是根据 SG 函数的定义 , 即 SG(u) = mex(SG(v)) ,预处理求出每个位置的 SG 值.一个位置的 SG 值与它后面的位置有关,是取决于它是倒数第几个位置,那么我们预处理求

BZOJ 1188: [HNOI2007]分裂游戏(multi-nim)

Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1386  Solved: 840[Submit][Status][Discuss] Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏.该游戏的规则试:共有n个瓶子,标号为0,1,2.....n-1,第i个瓶子中 装有p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择3个瓶子.标号为i,j,k,并要保证i<j,j<=k且第i个瓶子 中至少要有1颗巧克力豆,随后这个人从第i个瓶子中拿走

bzoj 1188 : [HNOI2007]分裂游戏 sg函数

题目链接 给n个位置, 每个位置有一个小球. 现在两个人进行操作, 每次操作可以选择一个位置i, 拿走一个小球.然后在位置j, k(i<j<=k)处放置一个小球. 问你先进行什么操作会先手必胜以及方法数量. 感觉这题好神 如果一个位置有偶数个小球, 那么等价于这个位置没有小球. 因为第二个人可以进行和第一个人相同的操作. 所以初始值%2. 然后我们把每个位置看成一个状态, 如果i有一个小球, 等价于j, k 也有一个小球. 然后转移. 方法数量就n^3枚举就可以了. #include <

BZOJ P1188 HNOI2007 分裂游戏——solution

题目描述: (<--这个) 组合游戏,——把每个石头看做一个游戏, Multi_game——消去i上的石子后,,k上的游戏又多了一个: 于是就套用multi_game的模型即可 求解SG函数时,发现一个游戏的后继是谁只与其位置有关,于是可以用一个SG值代替一堆游戏的SG值: 求解完所有SG值,后异或即可: 代码: 1 #include<cstdio> 2 #include<cstring> 3 using namespace std; 4 int a[25],n,sg[25]

Bzoj1188 [HNOI2007]分裂游戏

Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1110  Solved: 679 Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏. 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择 3 个瓶子.标号为 i,j,k, 并要保证 i < j , j < = k 且第 i 个瓶子中至少要有 1 颗巧克力豆,随后这个人从第 i 个瓶子中

【博弈论】【SG函数】【枚举】bzoj1188 [HNOI2007]分裂游戏

因为第i个瓶子里的所有豆子都是等价的,设sg(i)表示第i个瓶子的sg值,可以转移到sg(j)^sg(k)(i<j<n,j<=k<n)的状态. 只需要考虑豆子数是奇数的瓶子啦,因为如果豆子数是偶数,重复异或是没有意义的. 对于方案数什么的……枚举就好了. #include<cstdio> #include<cstring> #include<set> using namespace std; int T,n,a[21],SG[21]; int s

BZOJ 2756 奇怪的游戏(最大流)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2756 题意:在一个 N*M 的棋盘上玩,每个格子有一个数.每次 选择两个相邻的格子,并使这两个数都加上 1. 问最少多少次能使棋盘上的数都变成同一个数,如果永远不能变成同一个数则输出-1. 思路:对棋盘进行黑白染色,则每次操作使得黑白两色的格子总和各增加1.设黑色总和s1,个数cnt1:白色总和s2,个数cnt2,设最后的数字为x,那么有: x*cnt1-s1=x*cnt2-s2. (

BZOJ 1413 取石子游戏(DP)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1413 题意:n堆石子排成一排.每次只能在两侧的两堆中选择一堆拿.至少拿一个.谁不能操作谁输. 思路:参考这里. int f1[N][N],f2[N][N],n,a[N]; void deal() { RD(n); int i,j,k; FOR1(i,n) RD(a[i]),f1[i][i]=f2[i][i]=a[i]; int p,q,x; for(k=2;k<=n;k++) for(