算法导论学习 之 插入排序

刚刚开始系统学习算法导论和c++,每次学习的算法都用c++ 实现一边,加深理解,方便回顾。

先从最简单的插入排序开始吧:

code:

#include<iostream>
#include<vector>
#include<map>
using namespace std;
void Insertion_Sort(int * a,int length)
{
    int i,j,key;
    for(i = 1;i < length;i ++){
        key = a[i];
        j = i - 1;
        while(j >= 0&&a[j] > key){
            a[j + 1] = a[j];
            a[j] = key;
            j --;
        }
    }
}
int main(void)
{
    int a[10];
    int i;
    for(i = 0;i < 10;i ++)
        cin >> a[i];
    Insertion_Sort(a,10);

    for(i = 0;i < 10;i ++)
        cout << a[i] << " ";
    cout << endl;
    return 0;
}
时间: 2024-12-20 01:08:59

算法导论学习 之 插入排序的相关文章

算法导论学习之插入排序+合并排序

最近准备花时间把算法导论详细的看一遍,强化一下算法和数据结构的基础,将一些总结性的东西写到博客上去. 一.插入排序 算法思想:如果一个数组A,从A[1–n-1]都是有序的,然后我们将A[n]插入到A[1–n-1]的某个合适的位置上去那么就可以保证A[1–n]都是有序的.这就是插入排序的思想:具体实现的时候我们将数组的第一个元素看出有序,然后从第二个元素开始按照上面的步骤进行插入操作,直到插入最后一个元素,然后整个数组都是有序的了. 时间复杂度分析:代码中有两重for循环,很容易看出时间复杂度是n

算法导论—排序之插入排序

void insertion_sort(vector<int> &num){ for(int i = 1; i < num.size(); i++){ int j = i-1; int val = num[i]; while(j>=0 && num[j] >= val){ num[j+1] = num[j]; j--; } num[j+1] = val; } } 每次迭代时,将num[i] 作为key值,且前子数组[0,i-1] 构成已排好序,每次与左

算法导论学习---红黑树具体解释之插入(C语言实现)

前面我们学习二叉搜索树的时候发如今一些情况下其高度不是非常均匀,甚至有时候会退化成一条长链,所以我们引用一些"平衡"的二叉搜索树.红黑树就是一种"平衡"的二叉搜索树,它通过在每一个结点附加颜色位和路径上的一些约束条件能够保证在最坏的情况下基本动态集合操作的时间复杂度为O(nlgn).以下会总结红黑树的性质,然后分析红黑树的插入操作,并给出一份完整代码. 先给出红黑树的结点定义: #define RED 1 #define BLACK 0 ///红黑树结点定义,与普通

【算法导论学习-015】数组中选择第i小元素(Selection in expected linear time)

1.算法思想 问题描述:从数组array中找出第i小的元素(要求array中没有重复元素的情况),这是个经典的"线性时间选择(Selection in expected linear time)"问题. 思路:算法导论215页9.2 Selection in expect linear time 2.java实现 思路:算法导论216页伪代码 /*期望为线性时间的选择算法,输入要求,array中没有重复的元素*/ public static int randomizedSelect(i

算法导论学习---红黑树详解之插入(C语言实现)

前面我们学习二叉搜索树的时候发现在一些情况下其高度不是很均匀,甚至有时候会退化成一条长链,所以我们引用一些"平衡"的二叉搜索树.红黑树就是一种"平衡"的二叉搜索树,它通过在每个结点附加颜色位和路径上的一些约束条件可以保证在最坏的情况下基本动态集合操作的时间复杂度为O(nlgn).下面会总结红黑树的性质,然后分析红黑树的插入操作,并给出一份完整代码. 先给出红黑树的结点定义: #define RED 1 #define BLACK 0 ///红黑树结点定义,与普通的二

算法导论 学习资源

学习的过程会遇到些问题,发现了一些比较好的资源,每章都会看下别人写的总结,自己太懒了,先记录下别人写的吧,呵呵. 1  Tanky Woo的,每次差不多都看他的 <算法导论>学习总结 - 1.前言 <算法导论>学习总结 - 2.第一章 && 第二章 && 第三章 <算法导论>学习总结 - 3.第四章 && 第五章 <算法导论>学习总结 - 4.第六章(1) 堆排序 <算法导论>学习总结 - 5.第六

【算法导论学习-014】计数排序(CountingSortTest)

参考:<算法导论>P194页 8.2节 Counting sort 1.Counting sort的条件 待排序数全部分布在0~k之间,且k是已知数:或者分布在min~max之间,等价于分布在0~max-min之间,max和min是已知数. 2.java 实现 /** * 创建时间:2014年8月17日 下午3:22:14 项目名称:Test * * @author Cao Yanfeng * @since JDK 1.6.0_21 类说明: 计数排序法,复杂度O(n), 条件:所有数分布在0

【算法导论学习-015】基数排序(Radix sort)

1.<算法导论>P197页 8.3节Radix sort 2.java实现 这里仅仅对[算法导论学习-014]计数排序 的参数进行了修改,同时仅仅修改了一行代码. /** * 创建时间:2014年8月17日 下午4:05:48 * 项目名称:Test * @author Cao Yanfeng * @since JDK 1.6.0_21 * 类说明: 利用计数排序实现基数排序 * 条件:待排序的所有数位数相同,注意,即便不相同,也可以认为是最多那个位数,如下面的例子可以认为都是3位数 */ p

【算法导论学习-016】两个已排过序的等长数组的中位数(median of two sorted arrays)

问题来源 <算法导论>P223 9.3-8: Let X[1..n] and Y[1..n] be two arrays, each containing nnumbers already in sorted order. Give an O(lgn)-time algorithm to find themedian of all 2n elements in arrays X and Y. 翻译过来即:求两个等长(n个元素)的已排序数组A和B的中位数 方案1:对两个数组进行归并直到统计到第n