数据结构与算法 —— 二叉树

二叉树

定义:

  来自于百度百科。

  在计算机科学中,二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。

  二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第i层至多有2^{i-1}个结点;深度为k的二叉树至多有2^k-1个结点;对任何一棵二叉树T,如果其终端结点数为n_0,度为2的结点数为n_2,则n_0=n_2+1。

一棵深度为k,且有2^k-1个节点的二叉树,称为满二叉树。这种树的特点是每一层上的节点数都是最大节点数。而在一棵二叉树中,除最后一层外,若其余层都是满的,并且最后一层或者是满的,或者是在右边缺少连续若干节点,则此二叉树为完全二叉树。具有n个节点的完全二叉树的深度为log2n+1。深度为k的完全二叉树,至少有2^(k-1)个节点,至多有2^k-1个节点。

类型

(1)完全二叉树——若设二叉树的高度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第h层有叶子节点,并且叶子结点都是从左到右依次排布,这就是完全二叉树。

(2)满二叉树——除了叶结点外每一个结点都有左右子叶且叶子结点都处在最底层的二叉树。

(3)平衡二叉树——平衡二叉树又被称为AVL树(区别于AVL算法),它是一棵二叉排序树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

二叉树性质

(1) 在非空二叉树中,第i层的结点总数不超过

, i>=1;

(2) 深度为h的二叉树最多有

个结点(h>=1),最少有h个结点;

(3) 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;

(4) 具有n个结点的完全二叉树的深度为

(注:[ ]表示向下取整)

(5)有N个结点的完全二叉树各结点如果用顺序方式存储,则结点之间有如下关系:

若I为结点编号则 如果I>1,则其父结点的编号为I/2;

如果2*I<=N,则其左儿子(即左子树的根结点)的编号为2*I;若2*I>N,则无左儿子;

如果2*I+1<=N,则其右儿子的结点编号为2*I+1;若2*I+1>N,则无右儿子。

遍历顺序

遍历是对树的一种最基本的运算,所谓遍历二叉树,就是按一定的规则和顺序走遍二叉树的所有结点,使每一个结点都被访问一次,而且只被访问一次。由于二叉树是非线性结构,因此,树的遍历实质上是将二叉树的各个结点转换成为一个线性序列来表示。

设L、D、R分别表示遍历左子树、访问根结点和遍历右子树, 则对一棵二叉树的遍历有三种情况:DLR(称为先根次序遍历),LDR(称为中根次序遍历),LRD (称为后根次序遍历)。

在接下来的篇章里我们会涉及二叉树的算法。

coding交流群:226704167,愿和各位一起进步!

微信公众号:

原文地址:https://www.cnblogs.com/lip0121/p/9013343.html

时间: 2024-10-05 04:56:16

数据结构与算法 —— 二叉树的相关文章

javascript数据结构与算法--二叉树(插入节点、生成二叉树)

javascript数据结构与算法-- 插入节点.生成二叉树 二叉树中,相对较小的值保存在左节点上,较大的值保存在右节点中 /* *二叉树中,相对较小的值保存在左节点上,较大的值保存在右节点中 * * * */ /*用来生成一个节点*/ function Node(data, left, right) { this.data = data;//节点存储的数据 this.left = left; this.right = right; this.show = show; } function sh

[数据结构与算法] 二叉树及其遍历方式

声明:原创作品,转载时请注明文章来自SAP师太技术博客:www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将追究法律责任!原文链接:http://www.cnblogs.com/jiangzhengjun/p/4289830.html 一.数据结构分类 (一)按逻辑结构 集合(无辑关系) 线性结构(线性表):数组.链表.栈.队列 非线性结构:树.图.多维数组 (二)按存储结构 顺序(数组)储结构.链式储结构.索引储结构.散列储结构 二.二叉树相关性质

数据结构与算法--二叉树(一)

1 基于二叉链表的有序二叉树 1.1 问题 BST是Binary Search Tree的缩写,译为二叉搜索树,或有序二叉树,是二叉树的一种,它的定义如下: 1)或者是一棵空树: 2)或者是具有下列性质的二叉树: I) 若左子树不空,则左子树上所有结点的值均小于它的根结点的值: II) 若右子树不空,则右子树上所有结点的值均大于它的根结点的值: III)左.右子树也分别为二叉排序树: BST在查找一个结点或插入一个结点时,具有极大的优势,速度非常快.是一种基础性数据结构,广泛应用于更加抽象的集合

小甲鱼数据结构和算法-----二叉树的构建和前序遍历

题目要求:建立二叉树并输出每个字符所在的层数.如下图要求输出 A 在第一层 B.C 在第二层 D.E在第三层 代码如下: #include <stdio.h> #include <stdlib.h> typedef struct BiTNode { char data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; // 创建一棵二叉树,约定用户遵照前序遍历的方式输入数据 void CreateBiTree(BiTree *T)

数据结构和算法——二叉树

树1.树的优点有序数组: 查找很快,二分法实现的查找所需要的时间为O(logN),遍历也很快,但是在有序数组中插入,删除却需要先 找到位置, 在把数组部分元素后移,效率并不高. 链表: 链表的插入和删除都是很快速的,仅仅需要改变下引用值就行了,时间仅为O(1),但是在链表中查找数据却需要遍历所有的元素, 这个效率有些慢了.树的优点: 树结合了有序数组和链表的优点,可以实现快速的查找,也可以快速的删除,查找. 树的一些专用术语: 路径: 顺着连接节点的边从一个节点到另一个节点的,所经过的所有节点的

python数据结构与算法——二叉树结构与遍历方法

先序遍历,中序遍历,后序遍历 ,区别在于三条核心语句的位置 层序遍历  采用队列的遍历操作第一次访问根,在访问根的左孩子,接着访问根的有孩子,然后下一层 自左向右一一访问同层的结点 # 先序遍历 # 访问结点,遍历左子树,如果左子树为空,则遍历右子树, # 如果右子树为空,则向上走到一个可以向右走的结点,继续该过程 preorder(t):    if t:       print t.value       preorder t.L       preorder t.R # 中序遍历 # 从根

java数据结构和算法------二叉树基本操作

1 package iYou.neugle.tree; 2 3 import java.util.ArrayList; 4 import java.util.List; 5 6 public class Binary_Tree<T> { 7 private Tree tree = new Tree(); 8 9 class Tree { 10 public T data; 11 public Tree left; 12 public Tree right; 13 } 14 15 public

js数据结构和算法---二叉树

原文: https://segmentfault.com/a/1190000000740261 //前序遍历 function preOrder(node) { if (node != null) { node.style.background = "black"; setTimeout(function () { preOrder(node.children[0]); },1500); setTimeout(function () { preOrder(node.children[1

js数据结构与算法——二叉树

function BinaryTree(){ var Node = function(key){ this.key = key; //值 this.left = null; //左箭头 this.right = null; //右箭头 } //根节点 var root = null; var insertNode = function(oldNode,newNode){ if(newNode.key < oldNode.key){ if(oldNode.left === null){ oldNo