Batch Norm 对神经网络中的每一层进行正则化(未完成)

这个算法主要是解决了每一层中的正则化问题

其实我觉得这东西很鸡肋,因为我输入已经归一化了

然后初始的w,b也很小

每一层的输出肯定也很小

使用Batch Norm反而会加大训练时间,弱化神经网络中参数的作用

z(i)是这一层神经网络中第i个神经元,经过激活函数的输出

为了是下一层的输入比较相近,我们就需要使用Batch Norm

原文地址:https://www.cnblogs.com/shensobaolibin/p/8955701.html

时间: 2024-08-30 03:05:50

Batch Norm 对神经网络中的每一层进行正则化(未完成)的相关文章

caffe中batch norm源码阅读

1. batch norm 输入batch norm层的数据为[N, C, H, W], 该层计算得到均值为C个,方差为C个,输出数据为[N, C, H, W]. <1> 形象点说,均值的计算过程为: (1) 即对batch中相同索引的通道数取平均值,所以最终计算得到的均值为C个,方差的计算过程与此相同. <2> batch norm层的作用: a. 均值:(2) b. 方差:(3) c. 归一化:(4) 2. caffe中batch_norm_layer.cpp中的LayerSe

记录神经网络中一些小知识点

记录神经网络中一些小知识点 1 Caffe中的blob维度 Caffe中的blob具有4个维度,分别是num,channel,width和height: 其中我们在定义各个网络层时,常用到的一个参数numout,就是指定的channel: 比如说,维度为1*3*5*5的数据输入网络(即每次输入一张5*5大小的3通道图),经过一个stride为2,pad为1,kernel为2,numout为2的卷积层后,维度就变成了1*2*3*3: 假如输入有n个通道,计算时,caffe就会对应产生n个filte

如何选取一个神经网络中的超参数hyper-parameters

1.什么是超参数 所谓超参数,就是机器学习模型里面的框架参数.比如聚类方法里面类的个数,或者话题模型里面话题的个数等等,都称为超参数.它们跟训练过程中学习的参数(权重)是不一样的,通常是手工设定的,经过不断试错来调整,或者对一系列穷举出来的参数组合一通枚举(叫做网格搜索).深度学习和神经网络模型,有很多这样的参数需要学习. 2.一些启发式规则 在实际应用中,当你使用神经网络去解决问题时,很难找到好的超参数.假设我们现在正在处理MINIST数据库的问题,并且对超参数是如何使用的一无所知.假设我们大

神经网络中的参数的求解:前向和反向传播算法

神经网络最基本的知识可以参考神经网络基本知识,基本的东西说的很好了,然后这里讲一下神经网络中的参数的求解方法. 一些变量解释: 标上""的圆圈被称为偏置节点,也就是截距项. 本例神经网络有参数 ,其中 (下面的式子中用到)是第 层第 单元与第 层第 单元之间的联接参数(其实就是连接线上的权重,注意标号顺序), 是第 层第 单元的偏置项. 用 表示第 层的节点数(偏置单元不计在内) 用 表示第 层第 单元的激活值(输出值).当 时, ,也就是样本输入值的第 个特征. 用 表示第层各单元对

第二节,神经网络中反向传播四个基本公式证明——BackPropagation

参考文章 神经网络基础 Neural Networks and Deep Learning.       Michael A. Nielsen 一文弄懂神经网络中的反向传播法:讲的很详细,用实例演示了反向传播法中权重的更新过程,但是未涉及偏置的更新 假设一个三层的神经网络结构图如下: 对于一个单独的训练样本x其二次代价函数可以写成: C = 1/2|| y - aL||2 = 1/2∑j(yj - ajL)2 ajL=σ(zjL) zjl = ∑kωjklakl-1 + bjl 代价函数C是aj

浅谈神经网络中的激活函数

???????激活函数是神经网络中一个重要的环节,本文将介绍为什么神经网络网络要利用激活函数,几种常用的激活函数(逻辑函数Sigmoid.双曲正切函数tanh.线性整流函数(ReLU),神经网络中的梯度消失问题和ReLU如何避免梯度消失. 1 用激活函数的原因 ???????如果神经网络没有进行可以提取非线性特征的卷积操作,而且该神经网络也不用激活函数,那么这个神经网络第i层输出只有Wxi+b.这样此神经网络不论有多少层,第i层的输出都是一个关于第i层输入xi的线性组合,相当于此时多层神经网络退

神经网络中的权值初始化方法

1,概述 神经网络中的权值初始化方法有很多,但是这些方法的设计也是遵循一些逻辑的,并且也有自己的适用场景.首先我们假定输入的每个特征是服从均值为0,方差为1的分布(一般输入到神经网络的数据都是要做归一化的,就是为了达到这个条件). 为了使网络中的信息更好的传递,每一层的特征的方差应该尽可能相等,如果保证这个特征的方差是相等的呢.我们可以从初始化的权重值入手. 首先来做一个公式推导: $var(s) = var(\sum_i^n w_i x_i)$ $var(s) = \sum_i^n var(w

浅谈神经网络中的bias

1.什么是bias? 偏置单元(bias unit),在有些资料里也称为偏置项(bias term)或者截距项(intercept term),它其实就是函数的截距,与线性方程 y=wx+b 中的 b 的意义是一致的.在 y=wx+b中,b表示函数在y轴上的截距,控制着函数偏离原点的距离,其实在神经网络中的偏置单元也是类似的作用. 因此,神经网络的参数也可以表示为:(W, b),其中W表示参数矩阵,b表示偏置项或截距项. 2.bias的计算方式? 神经网络结构中对偏置单元的计算处理方式有两种, 

神经网络中的反向传播算法

神经网络中的方向传播算法讲得复杂难懂.简单地说明它的原理: 神经网络:输入层,隐藏层,输出层.根据线性关系,激活函数,并最终根据监督学习写出误差表达式.此时,误差函数可写成,那么权值w和它之间存在什么关系?求偏导分析之间的变化关系 不过如此.