mongodb MongoDB 聚合 group(转)

MongoDB 聚合

MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果。有点类似sql语句中的 count(*)。

基本语法为:db.collection.aggregate( [ <stage1>, <stage2>, ... ] )

现在在mycol集合中有以下数据:

{ "_id" : 1, "name" : "tom", "sex" : "男", "score" : 100, "age" : 34 }
{ "_id" : 2, "name" : "jeke", "sex" : "男", "score" : 90, "age" : 24 }
{ "_id" : 3, "name" : "kite", "sex" : "女", "score" : 40, "age" : 36 }
{ "_id" : 4, "name" : "herry", "sex" : "男", "score" : 90, "age" : 56 }
{ "_id" : 5, "name" : "marry", "sex" : "女", "score" : 70, "age" : 18 }
{ "_id" : 6, "name" : "john", "sex" : "男", "score" : 100, "age" : 31 }

1、$sum 计算总和。

  Sql:  select sex,count(*) from mycol group by sex

  MongoDb:  db.mycol.aggregate([{group: {_id: ‘group: {_id: ‘sex‘, personCount: {$sum: 1}}}])

  

  Sql:  select sex,sum(score) totalScore from mycol group by sex

  MongoDb:  db.mycol.aggregate([{group: {_id: ‘group: {_id: ‘sex‘, totalScore: {sum:′sum:′score‘}}}])

  

2、$avg  计算平均值

  Sql:  select sex,avg(score) avgScore from mycol group by sex

  Mongodb: db.mycol.aggregate([{group: {_id: ‘group: {_id: ‘sex‘, avgScore: {avg:′avg:′score‘}}}])

  

3、$max 获取集合中所有文档对应值得最大值。

  Sql:  select sex,max(score) maxScore from mycol group by sex

  Mongodb: db.mycol.aggregate([{group: {_id: ‘group: {_id: ‘sex‘, maxScore : {max:′max:′score‘}}}])

  

4、$min 获取集合中所有文档对应值得最小值。

  Sql:  select sex,min(score) minScore from mycol group by sex

  Mongodb: db.mycol.aggregate([{group: {_id: ‘group: {_id: ‘sex‘, minScore : {min:′min:′score‘}}}])

  

5、$push 把文档中某一列对应的所有数据插入值到一个数组中。

  Mongodb: db.mycol.aggregate([{group: {_id: ‘group: {_id: ‘sex‘, scores : {push:′push:′score‘}}}])

  

6、$addToSet 把文档中某一列对应的所有数据插入值到一个数组中,去掉重复的

  db.mycol.aggregate([{group: {_id: ‘group: {_id: ‘sex‘, scores : {addToSet:′addToSet:′score‘}}}])

  

7、 $first 根据资源文档的排序获取第一个文档数据。

   db.mycol.aggregate([{group: {_id: ‘group: {_id: ‘sex‘, firstPerson : {first:′first:′name‘}}}])

  

8、 $last 根据资源文档的排序获取最后一个文档数据。

   db.mycol.aggregate([{group: {_id: ‘group: {_id: ‘sex‘, lastPerson : {last:′last:′name‘}}}])

  

9、全部统计 null

  db.mycol.aggregate([{group:{_id:null,totalScore:{group:{_id:null,totalScore:{push:‘$score‘}}}])

  

例子

  现在在t2集合中有以下数据:

  { "country" : "china", "province" : "sh", "userid" : "a" } 
  { "country" : "china", "province" : "sh", "userid" : "b" }
  { "country" : "china", "province" : "sh", "userid" : "a" }
  { "country" : "china", "province" : "sh", "userid" : "c" }
  { "country" : "china", "province" : "bj", "userid" : "da" } 
  { "country" : "china", "province" : "bj", "userid" : "fa" }

  

  需求是统计出每个country/province下的userid的数量(同一个userid只统计一次)

  过程如下。

  首先试着这样来统计:

  db.t2.aggregate([ { group: {"_id": { "country" : "group: {"_id": { "country" : "country", "prov": "province"} , "number":{province"} , "number":{sum:1}} } ])

  结果是错误的:

  

  原因是,这样来统计不能区分userid相同的情况 (上面的数据中sh有两个 userid = a)

  为了解决这个问题,首先执行一个group,其id 是 country, province, userid三个field:

  db.t2.aggregate([ { group: {"_id": { "country" : "group: {"_id": { "country" : "country", "province": "province","uid":"province","uid":"userid" } } } ])

  

  

  可以看出,这步的目的是把相同的userid只剩下一个。

  然后第二步,再第一步的结果之上再执行统计:

  db.t2.aggregate([ 
  { group: {"_id": { "country" : "group: {"_id": { "country" : "country", "province": "province","uid":"province","uid":"userid" } } } , 
  { group: {"_id": { "country" : "group: {"_id": { "country" : "_id.country", "province": "_id.province"  }, count : {_id.province"  }, count : {sum : 1 } } } 
  ])

  这回就对了

  

  加入一个$project操作符,把_id去掉

  db.t2.aggregate([ { group: {"_id": { "country" : "group: {"_id": { "country" : "country", "province": "province","uid":"province","uid":"userid" } } } , 
  { group: {"_id": { "country" : "group: {"_id": { "country" : "_id.country", "province": "_id.province"  }, count: {_id.province"  }, count: {sum : 1 } } }, 
  { project : {"_id": 0, "country" : "project : {"_id": 0, "country" : "_id.country", "province" : "$_id.province", "count" : 1}} 
  ])

  最终结果如下:

  

管道的概念

管道在Unix和Linux中一般用于将当前命令的输出结果作为下一个命令的参数。

MongoDB的聚合管道将MongoDB文档在一个管道处理完毕后将结果传递给下一个管道处理。管道操作是可以重复的。

表达式:处理输入文档并输出。表达式是无状态的,只能用于计算当前聚合管道的文档,不能处理其它的文档。

这里我们介绍一下聚合框架中常用的几个操作:

  • $project:修改输入文档的结构。可以用来重命名、增加或删除域,也可以用于创建计算结果以及嵌套文档。
  • match:用于过滤数据,只输出符合条件的文档。match:用于过滤数据,只输出符合条件的文档。match使用MongoDB的标准查询操作。
  • $limit:用来限制MongoDB聚合管道返回的文档数。
  • $skip:在聚合管道中跳过指定数量的文档,并返回余下的文档。
  • $unwind:将文档中的某一个数组类型字段拆分成多条,每条包含数组中的一个值。
  • $group:将集合中的文档分组,可用于统计结果。
  • $sort:将输入文档排序后输出。
  • $geoNear:输出接近某一地理位置的有序文档。

1、$project实例

   db.mycol.aggregate({$project:{name : 1, score : 1}})

  

  这样的话结果中就只还有_id,name和score三个字段了,默认情况下_id字段是被包含的,如果要想不包含_id话可以这样:

  db.mycol.aggregate({$project:{_id : 0, name : 1, score : 1}})

  

2、$match实例

  match用于获取分数大于30小于并且小于100的记录,然后将符合条件的记录送到下一阶段match用于获取分数大于30小于并且小于100的记录,然后将符合条件的记录送到下一阶段group管道操作符进行处理

  db.mycol.aggregate([{match :{score: {match :{score: {gt: 30, lt: 100}}},{lt: 100}}},{group:{_id:‘sex‘,count:{sex‘,count:{sum:1}}}]) 

  

原文地址:https://www.cnblogs.com/sandea/p/8279129.html

时间: 2024-11-05 19:31:35

mongodb MongoDB 聚合 group(转)的相关文章

MongoDB 聚合Group(一)

一.简介 db.collection.group()使用JavaScript,它受到了一些性能上的限制.大多数情况下,$ group在Aggregation Pipeline提供了一种具有较少的限制适用的替代.可以通过指定的键的集合中的文档和执行简单的聚合函数.在2.2版本中,返回的数组可以包含最多20000个元素:即最多20000个独特的分组. 我们比较熟悉的group by 的sql语句select key from table  groupby key,而mongoDB没提供SQL那样通过

mongodb MongoDB 聚合 group

MongoDB 聚合 MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果.有点类似sql语句中的 count(*). 基本语法为:db.collection.aggregate( [ <stage1>, <stage2>, ... ] ) 现在在mycol集合中有以下数据: { "_id" : 1, "name" : "tom", "sex" :

Mongodb的聚合和管道

MongoDB 聚合 MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果. aggregate() 方法 MongoDB中聚合的方法使用aggregate(). 语法 aggregate() 方法的基本语法格式如下所示: >db.COLLECTION_NAME.aggregate(AGGREGATE_OPERATION) 注:参数AGGREGATE_OPERATION可以是一个对象(单个处理),也可以是多个对象的数组(管道处理). >

【翻译】MongoDB指南/聚合——聚合管道

[原文地址]https://docs.mongodb.com/manual/ 聚合 聚合操作处理数据记录并返回计算后的结果.聚合操作将多个文档分组,并能对已分组的数据执行一系列操作而返回单一结果.MongoDB提供了三种执行聚合的方式:聚合管道,map-reduce方法和单一目的聚合操作. 聚合管道 MongoDB的聚合框架模型建立在数据处理管道这一概念的基础之上.文档进入多阶段管道中,管道将文档转换为聚合结果.最基本的管道阶段类似于查询过滤器和修改输出文档形式的文档转换器. 其他的管道为分组和

MongoDB的使用学习之(七)MongoDB的聚合查询(两种方式)附项目源码

先来张在路上-- 此项目是用Maven创建的,没有使用Maven的,自己百度.谷歌去:直接用Junit测试就行,先执行里面的save方法,添加10000条测试数据提供各种聚合查询等. 废话不多说,上干货-- 一.MongoDB数据库的配置(mongodb.xml) 以下是我自己的配置,红色字体请改为自己本机的东东,你说不懂设置端口,不会创建数据库名称,不会配置用户名密码,那有请查阅本系列的第4节(MongoDB的使用学习之(四)权限设置--用户名.密码.端口==),你说懒得设置,那就@#¥%--

MongoDB,分组,聚合

使用聚合,db.集合名.aggregate- 而不是find 管道在Unix和Linux中一般用于将当前命令的输出结果作为下一个命令的参数.MongoDB的聚合管道将MongoDB文档在一个管道处理完毕后将结果传递给下一个管道处理.管道操作是可以重复的. 每一个操作符(集合)都会接受一连串的文档,对这些文档做一些类型转换,最后将转换后的文档作为结果传递给下一个操作符,对于最后一个操作符,是将结果返回给客户端 //分组(这里制定了分组字段 $+字段名)//这里可以理解为,吧lastModifyBy

【MongoDB】MongoDB之聚合框架(一)

题记: 还有3天2014年结束了,这个月的计划除了总结Mongodb外其他计划都已经完成了.最近由于懒惰对于mongodb的研究暂停了好长时间.在最后的三天里,对于mongodb的研究做以总结和梳理: 一.基本概念 对于聚合框架,我在官方文档(http://docs.mongodb.org/manual/core/aggregation-introduction/)找到对它的介绍.翻译大概意思如下: 聚合是处理数据记录并且返回计算结果的操作.mongodb提供了一组强大针对数据集合进行检查和计算

mongodb 分组聚合查询

MongoDB,分组,聚合 使用聚合,db.集合名.aggregate- 而不是find 管道在Unix和Linux中一般用于将当前命令的输出结果作为下一个命令的参数.MongoDB的聚合管道将MongoDB文档在一个管道处理完毕后将结果传递给下一个管道处理.管道操作是可以重复的. 每一个操作符(集合)都会接受一连串的文档,对这些文档做一些类型转换,最后将转换后的文档作为结果传递给下一个操作符,对于最后一个操作符,是将结果返回给客户端 //分组(这里制定了分组字段 $+字段名)//这里可以理解为

mongodb高级聚合查询

在工作中会经常遇到一些mongodb的聚合操作,特此总结下.mongo存储的可以是复杂类型,比如数组.对象等mysql不善于处理的文档型结构,并且聚合的操作也比mysql复杂很多. 注:本文基于 mongodb v3.6 目录 mongo与mysql聚合类比 aggregate简介 aggregate语法 aggregate常用pipeline stage介绍(本文核心) mongo与mysql聚合类比 为了便于理解,先将常见的mongo的聚合操作和mysql的查询做下类比: SQL 操作/函数