【NOIP2016提高A组模拟8.15】Password

题目

分析

首先我们知道,原A序列其实表示一个矩阵,而这个矩阵的对角线上的数字就是答案B序列。
接着\(a、b>=gcd(a,b)\),所以序列A中的最大的数就是ans[1],第二大的数就是ans[2]。
但是ans[3]并不一定就是序列A中的第三大的数,因为gcd(ans[1],ans[2])有可能是序列A中的第三大的数。
所以但找到了ans[i],对于每个gcd(ans[i],ans[1~i-1])在序列A中删掉两个(就是删掉2(i-1)个。为什么是两个自己考虑)。时间复杂度\(O(n^2log_2n)\)
至于如何删掉gcd(ans[i],ans[1~i-1]),有两种方法:hash和二分
这里讲二分的方法:
因为已经将序列A从大到小排好了序,接着二分出位置最小的gcd(ans[i],ans[1~i-1])的位置,设位置为pos,接着将bz[pos]、bz[pos+1]赋值为false。
再设next,将next[pos]加二,下次删除就从next[pos]开始。如此类推。

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const int maxlongint=2147483647;
const int mo=1000000007;
const int N=1005;
using namespace std;
int a[N*N],sum[N*N],n,m,ans[N*N],tot,next[N*N];
bool bz[N*N];
bool cmp(int x,int y)
{
    return x>y;
}
int gcd(int x,int y)
{
    if(y==0) return x;
    if(x<y) return gcd(y,x);
    else return gcd(y, x%y);
}
int rf(int l,int r,int p)
{
    while(l+1<r)
    {
        int mid=(l+r)/2;
        if(a[mid]>p)
            l=mid;
        else
            r=mid;
    }
    if(p==a[l])
        return l;
    else
        return r;
}
int main()
{
    scanf("%d",&n);
    a[0]=maxlongint;
    memset(bz,true,sizeof(bz));
    for(int i=1;i<=n*n;i++)
    {
        scanf("%d",&a[i]);
        next[i]=i;
    }
    sort(a+1,a+n*n+1,cmp);
    ans[1]=a[1];
    int k=1;
    for(int i=2;i<=n*n && k<n;i++)
    {
        if(bz[i])
        {
            ans[++k]=a[i];
            for(int j=1;j<=k-1;j++)
            {
                int p=gcd(ans[j],ans[k]);
                int pos=rf(i+1,n*n,p);
                bz[next[pos]]=bz[next[pos]+1]=false;
                next[pos]=next[pos]+2;
            }
        }
    }
    for(int i=1;i<=n;i++)
        printf("%d ",ans[i]);
}

原文地址:https://www.cnblogs.com/chen1352/p/9043533.html

时间: 2024-11-09 02:54:07

【NOIP2016提高A组模拟8.15】Password的相关文章

【NOIP2016提高A组模拟8.15】Garden

题目 分析 其实原题就是[cqoi2012][bzoj2669]局部极小值. 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值. 给出所有局部极小值的位置,你的任务是判断有多少个可能的矩阵. 发现,X的位置最多有8个,那我们考虑状压dp. 我们从小到大把数填进去,用\(f_{i,j}\)表示,把第i个数填进去后,每个X是否被填了数,用二进制数j表示. 预处理出\(rest_j\)表示填充状态

【NOIP2016提高A组模拟9.15】Osu

题目 分析 考虑二分答案, 二分小数显然是不可取的,那么我们将所有可能的答案求出来,记录在一个数组上,排个序(C++调用函数很容易超时,手打快排,时间复杂度约为\(O(>8*10^7)\),但相信梦想的力量). 剩下就简单了,将二分出的值判断是否可以获得k分以上, 这里可以用多种方法,spfa.dp dp: \(dp_i\)表示移动到了第i个点的最大分数 #include <cmath> #include <iostream> #include <cstdio>

【NOIP2016提高A组模拟9.15】Math

题目 分析 因为\((-1)^2=1\), 所以我们只用看\(\sum_{j=1}^md(i·j)\)的值模2的值就可以了. 易证,一个数x,只有当x是完全平方数时,d(x)才为奇数,否则为偶数. 那么设\(i=p*q^2\),p不包含任何平方因子, 要使\(i·j\)为完全平方数,则\(j=p*k^2\), 因为\(j<=m\) 所以j就有\(\sqrt{\dfrac{m}{p}}\). 因此我们可以求出每个i对应的p来算出答案. 但对于每个i都求出p的话,时间复杂度为\(O(n\sqrt{n

【NOIP2016提高A组模拟10.15】最大化

题目 分析 枚举两个纵坐标i.j,接着表示枚举区域的上下边界, 设对于每个横坐标区域的前缀和和为\(s_l\),枚举k, 显然当\(s_k>s_l\)时,以(i,k)为左上角,(j,k)为右下角的矩阵一定合法. k从小到大,维护一个单调队列, 显然当\(l1<l2\)时 如果\(s_{l1}<s_{l2}\),l2一定对答案没有贡献,就不将其加入单调队列. 对于一个k,在单调队列中二分,枚举出一个最小的位置,并且\(s_k>s_l\). #include <iostream&

【NOIP2016提高A组模拟10.15】算循环

题目 分析 一步步删掉循环, 首先,原式是\[\sum_{i=1}^n\sum_{j=1}^m\sum_{k=i}^n\sum_{l=j}^m\sum_{p=i}^k\sum_{q=j}^l1\] 删掉最后两个循环 \[\sum_{i=1}^n\sum_{j=1}^m\sum_{k=i}^n\sum_{l=j}^m(k-i+1)(l-j+1)\] 发现,当\(i,j\)固定,随着\(k,l\)的变化,\((k-i+1),(l-j+1)\)都是每次减少1 SO, \[\sum_{i=1}^n\su

NOIP2016提高A组模拟10.15总结

第一题,就是将原有的式子一步步简化,不过有点麻烦,搞了很久. 第二题,枚举上下边界,维护一个单调队列,二分. 比赛上没有想到,只打了个暴力,坑了80分. 第三题,贪心,最后的十多分钟才想到,没有打出来. 心得 1.首先感谢出题人,暴力分好多. 2.但是,比赛期间,我在交头接耳,浪费了很多时间.导致时间不够. 原文地址:https://www.cnblogs.com/chen1352/p/9066567.html

【NOIP2016提高A组模拟9.17】数格子

题目 分析 设表示每一行的状态,用一个4位的二进制来表示,当前这一行中的每一个位数对下一位有没有影响. 设\(f_{i,s}\)表示,做完了的i行,其状态为s,的方案数. 两个状态之间是否可以转移就留给读者自己思考了. 答案就是\(f_{n,0}\)因为最后一行对下一行不能造成影响. 然而,这样只有60分. 100分是个矩阵快速幂, B矩阵构造很简单,当两个状态\(s.s'\)可以转移,那么,B矩阵\(g_{s,s'}=1\). 当i等于零时, A矩阵为{1, 0 \(<\)repeats 15

【NOIP2016提高A组模拟8.14】传送带

题目 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.FTD在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在FTD想从A点走到D点,他想知道最少需要走多长时间 分析 易得,答案就是首先在AB上走一段,然后走到CD上的一点,再走到D. 正解就是三分套三分,但本人很懒,打了个枚举加三分,勉强卡了过去. 首先在AB上枚举一点,接着在CD上按时间三分. #include <cmath> #include <iostrea

【NOIP2016提高A组模拟8.14】疯狂的火神

题目 火神为了检验zone的力量,他决定单挑n个人. 由于火神训练时间有限,最多只有t分钟,所以他可以选择一部分人来单挑,由于有丽子的帮助,他得到了每个人特定的价值,每个人的价值由一个三元组(a,b,c)组成,表示如果火神在第x分钟单挑这个人(x指单挑完这个人的时间),他就会得到a-b*x的经验值,并且他需要c分钟来打倒这个人. 现在火神想知道,他最多可以得到多少经验值,由于火神本来就很笨,进入zone的疯狂的火神就更笨了,所以他希望你来帮他计算出他最多可以得到多少经验值. 分析 注意到这道题有